Skip to main content
Log in

Phase Composition and Superplastic Behavior of a Wrought AlCoCrCuFeNi High-Entropy Alloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A cast AlCoCrCuFeNi high-entropy alloy was multiaxially forged at 950°C to produce a fine homogeneous mixture of grains/particles of four different phases with the average size of ~2.1 μm. The forged alloy exhibited unusual superplastic behavior accompanied by a pronounced softening stage, followed by a steady-state flow stage, during tensile deformation at temperatures of 800°C–1000°C and at strain rates of 10−4–10−1 s−1. Despite the softening stage, no noticeable strain localization was observed and a total elongation of up to 1240% was obtained. A detailed analysis of the phase composition and microstructure of the alloy before and after superplastic deformation was conducted, the strain rate and temperature dependences of the flow stress were determined at different stages of the superplastic deformation, and the relationships between the microstructure and properties were identified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.T. Chun, C.H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  2. J.-W. Yeh, Ann. Chim. Sci. Mater. 31, 633 (2006).

    Article  Google Scholar 

  3. J.-W. Yeh, Y.-L. Chen, S.-J. Lin, and S.-K. Chen, Mater. Sci. Forum 560, 1 (2007).

    Article  Google Scholar 

  4. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Mater. Sci. Eng. A 454–455, 260 (2007).

    Article  Google Scholar 

  5. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Appl. Phys. Lett. 90, 180904 (2007).

    Google Scholar 

  6. Y.J. Zhou, Y. Zhang, F.J. Wang, Y.L. Wang, and G.I. Chen, J. Alloys Compd. 466, 201 (2008).

    Article  Google Scholar 

  7. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu, Mater. Sci. Eng. A 491, 154 (2008).

    Article  Google Scholar 

  8. F.J. Wang and Y. Zhang, Mater. Sci. Eng. A 496, 214 (2008).

    Article  Google Scholar 

  9. L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, and L. Zhou, Intermetallics 17, 266 (2009).

    Article  Google Scholar 

  10. C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang, J. Alloys Compd. 490, 160 (2010).

    Article  Google Scholar 

  11. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.H. Hu, Mater. Sci. Eng. A 527, 6975 (2010).

    Article  Google Scholar 

  12. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).

    Article  Google Scholar 

  13. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodwart, J. Alloys Compd. 509, 6043 (2011).

    Article  Google Scholar 

  14. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Acta Mater. 50, 182 (2011).

    Article  Google Scholar 

  15. T.T. Shun, C.-H. Hung, and C.-F. Lee, J. Alloys Compd. 493, 105 (2010).

    Article  Google Scholar 

  16. Y.P. Wang, B.S. Li, and H.Z. Fu, Adv. Eng. Mater. 11, 641 (2009).

    Article  Google Scholar 

  17. C.-W. Tsai, Y.-L. Chen, M.-H. Tsai, J.-W. Yeh, T.-T. Shun, and S.K. Chen, J. Alloys Compd. 486, 427 (2009).

    Article  Google Scholar 

  18. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics 18, 1758 (2010).

    Article  Google Scholar 

  19. A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Mater. Sci. Eng. A 533, 107 (2012).

    Article  Google Scholar 

  20. A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Mater. Sci. Forum 735, 146 (2013).

    Article  Google Scholar 

  21. A.M. Soifer, A. Verdyan, M. Kazakevich, and E. Rabkin, Scr. Mater. 47, 799 (2004).

    Article  Google Scholar 

  22. T. Ohmura, K. Tsuzaki, K. Sawada, and K. Kimura, J. Mater. Res. 21, 1229 (2003).

    Article  Google Scholar 

  23. G.E. Dieter, Mechanical Metallurgy, 3rd ed. (New York, NY: McGraw-Hill, Inc., 1986).

    Google Scholar 

  24. H.J. McQueen and J.J. Jonas, Treatise on Materials Science and Technology, vol. 6, ed. R.J. Arsenault (New York, NY: Academic Press, 1975), pp. 393–493.

    Google Scholar 

  25. J.J. Jonas, C.M. Sellars, and W.J.Mc.G. Tegart, Met Rev. 14, 1 (1969).

    Article  Google Scholar 

  26. G. Effenberg, Landolt–Bornstein. Numerical Data and Functional Relationships in Science and Technology. New Series IV/11A2 (Stuttgart: MSIT Material Science International Team, 2005), pp. 104–126.

    Google Scholar 

  27. T.G. Nieh, J. Wadsworth, and O.D. Sherby, Superplasticity in Metals and Ceramics Cambridge Solid State Science Series (Cambridge, MA: Cambridge University Press, 1997).

    Google Scholar 

  28. C.M. Lin and H.L. Tsai, Mater. Chem. Phys. 128, 50 (2011).

    Article  Google Scholar 

  29. Ch.-Ch. Hsieh and W. Wu, ISRN Metallurgy Article ID 732491 (2012).

  30. Z. Liu, S. Guo, X. Liu, J. Ye, Y. Yang, X.-L. Wang, L. Yang, K. An, and C.T. Liu, Scr. Mater. 64, 868 (2011).

    Article  Google Scholar 

  31. G. Effenberg, Landolt–Bornstein. Numerical Data and Functional Relationships in Science and Technology. New Series IV/11D2 (Stuttgart: MSIT Material Science International Team, 2005), pp. 1–36.

    Google Scholar 

  32. The Stainless Steel information Center, High Temperature Properties, http://www.ssina.com/composition/temperature.html. Accessed 17 Aug 2013.

  33. R. Darolia, JOM 43, 44 (1991).

    Article  Google Scholar 

  34. O.A. Kaibyshev, Superplasticity of Alloys, Intermetallides and Ceramics (Berlin: Springer, 1992).

    Book  Google Scholar 

  35. R.M. Imayev, O.A. Kaibyshev, and G.A. Salishchev, Acta Metall. 40, 581 (1992).

    Article  Google Scholar 

  36. K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Acta Mater. 61, 4887 (2013).

    Article  Google Scholar 

  37. C. Ng, S. Guo, J. Luan, S. Shi, and C.T. Liu, Intermetallics 31, 165 (2012).

    Article  Google Scholar 

  38. C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM 64, 839 (2012).

    Article  Google Scholar 

  39. D.B. Butrymowicz, J.R. Manning, and M.E. Read, J. Phys. Chem. Ref. Data 2, 643 (1973).

    Article  Google Scholar 

  40. M. Sakamoto, J. Phys. Soc. Jpn. 13, 845 (1958).

    Article  Google Scholar 

  41. A.A. Vasilyev, S.F. Sokolov, N.G. Kolbasnikov, and D.F. Sokolov, Phys. Solid State 53, 2194 (2011).

    Article  Google Scholar 

  42. H.J. Frost and M.F. Ashby, Fundamental Aspects of Structural Alloy Design (New York, NY: Plenum Press, 1977).

    Google Scholar 

  43. S. Meagher, R.S. Borch, J. Groza, A.K. Mukherjee, and H.W. Green II, Acta Metall. Mater. 40, 159 (1992).

    Article  Google Scholar 

  44. A. Chaudhuri, Met. Sci. 3, 159 (1969).

    Google Scholar 

  45. J.L. Campbell and C.W. Schulte, J. Appl. Phys. 19, 149 (1979).

    Article  Google Scholar 

  46. W. Ren, J. Guo, G. Li, and J. Wu, Mater. Trans. 42, 1731 (2004).

    Article  Google Scholar 

  47. M.E. Kassner and M.T. Pérez-Prado, Fundamentals of Creep in Metals and Alloys (Amsterdam: Elsevier, 2004).

    Google Scholar 

Download references

Acknowledgement

The financial support from the Ministry of Science and Education of Russian Federation through the Grant No. 02.11.740.5184 is kindly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Senkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaysultanov, D.G., Stepanov, N.D., Kuznetsov, A.V. et al. Phase Composition and Superplastic Behavior of a Wrought AlCoCrCuFeNi High-Entropy Alloy. JOM 65, 1815–1828 (2013). https://doi.org/10.1007/s11837-013-0754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0754-5

Keywords

Navigation