Skip to main content
Log in

Recent advances in modulated pulsed power magnetron sputtering for surface engineering

  • Structural, Functional, and Biological Thin Films
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Over the past 10 years, the development of high-power pulsed magnetron sputtering (HPPMS) has shown considerable potential in improving the quality of sputtered films by generating a high degree of ionization of the sputtered species to achieve high plasma density by using pulsed, high peak target power for a short period of time. However, the early HPPMS technique showed a significantly decreased deposition rate as compared to traditional magnetron sputtering. Recently, an alternative HPPMS deposition technique known as modulated pulsed power (MPP) magnetron sputtering has been developed. This new sputtering technique is capable of producing a high ionization fraction of sputter target species and while at the same time achieving a high deposition rate. This paper is aimed at giving a review of recent advances in the MPP technique in terms of the plasma properties, the improvements in the structure and properties of the thin films, and the important advances in the high rate deposition of high quality thick coatings on the order of 20–100 μm in thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Kouznetsov, K. Macák, J.M. Schneider, U. Helmersson, and I. Petrov, Surf. Coat. Technol., 122 (1999), pp. 290–293.

    Article  CAS  Google Scholar 

  2. K. Macák, V. Kouznetsov, J. Schneider, U. Helmersson, and I. Petrov, J. Vac. Sci. Technol. A, 18(4) (2000), pp. 1533–1537.

    Article  Google Scholar 

  3. U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, and J.T. Gudmundsson, Thin Solid Films, 513 (2006), pp. 1–24.

    Article  CAS  Google Scholar 

  4. R. Chistyakov, B. Abraham, and W.D. Sproul, Proceedings of the 49 th Annual SVC Technical Conference (Washington, DC, April 23–27, 2006), pp. 88–91.

  5. R. Chistyakov, B. Abraham, W. Sproul, J. Moore, and J. Lin, Proceedings of the 50 th Annual SVC Technical Conference (Louisville, KY, April 30–May 3, 2007), pp. 139–143.

  6. W.D. Sproul, D.J. Christie, and D.C. Carter, Proceedings of the 47 th Annual SVC Technical Conference (Dallas, Texas, April 25–29, 2004), pp. 96–100.

  7. W.D. Sproul, R. Chistyakov, and B. Abraham, Society of Vacuum Coaters News Bulletin (Summer 2006), pp. 35–37.

  8. J. Lin, J.J. Moore, W.D. Sproul, B. Mishra, J.A. Rees, Z. Wu, R. Chistyakov, and B. Abraham, Surf. Coat. Technol., 203 (2009), pp. 3676–3685.

    Article  CAS  Google Scholar 

  9. J. Bohlmark, M. Lattemann, J.T. Gudmundsson, A.P. Ehiasarian, Y. Aranda Gonzalvo, N. Brenning, and U. Helmersson, Thin Solid Films, 515 (2006), pp. 1522–1526.

    Article  CAS  Google Scholar 

  10. D.J. Christie, F. Tomasel, W.D. Sproul, and D.C. Carter, J. Vac. Sci. Technol. A, 22(4) (2004), pp. 1415–1419.

    Article  CAS  Google Scholar 

  11. U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, and J.T. Gudmundsson, Thin Solid Films, 513 (2006), pp. 1–24.

    Article  CAS  Google Scholar 

  12. J. Vlček, P. Kudláček, K. Burcalová, and J. Musil, J. Vac. Sci. Technol. A, 25(1) (2007), pp. 42–47.

    Article  Google Scholar 

  13. P. Poolcharuansin and J.W. Bradley, Plasma Sources Sci. Technol., 19 (2010), p. 025010.

    Article  Google Scholar 

  14. D. Lundin, P. Larsson, E. Wallin, M. Lattemann, N. Brenning, and U. Helmersson, Plasma Sources Sci. Technol., 17 (2008), p. 035021.

    Article  Google Scholar 

  15. A.P. Ehiasarian, P.Eh. Horsepian, L. Hultman, and U. Helmersson, Thin Solid Films, 457 (2004), pp. 270–277.

    Article  CAS  Google Scholar 

  16. J. Alami, K. Sarakinos, F. Uslu, and M. Wuttig, J. Phys. D: Appl. Phys., 42 (2009), p. 015304.

    Article  Google Scholar 

  17. K. Sarakinos, J. Wördenweber, F. Uslu, P. Schulz, J. Alami, and M. Wuttig, Surf. Coat. Technol., 202 (2008), pp. 2323–2327.

    Article  CAS  Google Scholar 

  18. S. Konstantinidis, J.P. Dauchot, and M. Hecq, Thin Solid Films, 515 (2006), pp. 1182–1186.

    Article  CAS  Google Scholar 

  19. V. Sittinger, F. Ruske, W. Werner, C. Jacobs, B. Szyszka, and D.J. Christie, Thin Solid Films, 516 (2008), pp. 5847–5859.

    Article  CAS  Google Scholar 

  20. C. Reinhard, A.P. Ehiasarian, and P.Eh. Hovsepian, Thin Solid Films, 515 (2007), pp. 3685–3692.

    Article  CAS  Google Scholar 

  21. J. Alami, P.O. J. Bohlmark, and U. Helmersson, J. Vac. Sci. Technol., A23(2) (2005), pp. 278–280.

    Google Scholar 

  22. K. Bobzin, N. Bagcivan, P. Immich, S. Bolz, R. Cremer, and T. Leyendecker, Thin Solid Films, 517 (2008), pp. 1251–1256.

    Article  CAS  Google Scholar 

  23. M. Lattemann, A.P. Ehiasarian, J. Bohlmark, P.O. Persson, and U. Helmersson, Surf. Coat. Technol., 200 (2006), p. 6495.

    Article  CAS  Google Scholar 

  24. A.P. Ehiasarian, J.G. Wen, and I. Petrov, J. Appl. Phys., 101 (2007), p. 054301.

    Article  Google Scholar 

  25. K. Sarakinos, J. Alami, and M. Wuttig, J. Phys, D: Appl. Phys., 40 (2007), pp. 2108–2114.

    Article  CAS  Google Scholar 

  26. K. Sarakinos, J. Alami, and S. Konstantinidis, Surf. Coat. Technol., 204 (2010), pp. 1661–1684.

    Article  CAS  Google Scholar 

  27. A. Anders, J. Vac. Sci. Technol. A, 28(4) (2010), pp. 783–790.

    Article  CAS  Google Scholar 

  28. D.J. Christie, J. Vac. Sci. Technol. A, 23(2) (2005), pp. 330–335.

    Article  CAS  Google Scholar 

  29. D.J. Christie, Czechoslovak Journal of Physics, 56 (2006), Suppl. B, pp. B93–B97.

    Article  Google Scholar 

  30. J. Lin, J.J. Moore, W.D. Sproul, B. Mishra, Z. Wu, and J. Wang, Surf. Coat. Technol., 204 (2010), pp. 2230–2239.

    Article  CAS  Google Scholar 

  31. J. Lin, J.J. Moore, W.D. Sproul, B. Mishra, and Z. Wu, Thin Solid Films, 518 (2009), pp. 1566–1570.

    Article  CAS  Google Scholar 

  32. J. Lin, John J. Moore, W.D. Sproul, Sabrina L Lee, and Jun Wang, IEEE Transactions on Plasma Science: Special Issue on HIPIMS and High Power Glow Discharges, 38(11) (2010), pp. 3071–3078.

    CAS  Google Scholar 

  33. W.D. Sproul, J. Lin, J.J. Moore, S.L. Lee, and J. Wang, Proc. 53rd Annual Technical SVC Technical Conference (Orlando, FL, April 17–22, 2010), pp. 187–192.

  34. J. Lin, W.D. Sproul, J.J. Moore, and S.L. Lee, “Effect of Negative Substrate Bias Voltage on the Structure and Properties of CrN Films Deposited by Modulated Pulsed Power (MPP) Magnetron Sputtering,” J. Phys. D:Appl. Phys., (2011) submitted for publication.

  35. W.D. Sproul, P.J. Rudnik, M.E. Graham, and S.L. Rohde, Surf. Coat. Technol., 43–44 (1990), pp. 270–278.

    Article  Google Scholar 

  36. S.L. Rohde, I. Petrov, W.D. Sproul, S.A. Barnett, P.J. Rudnik, and M. E. Graham, Thin Solid Films, 193 (1990), pp. 117–126.

    Article  Google Scholar 

  37. L. Meng, A.N. Cloud, S. Jung, and D.N. Ruzic, J. Vac. Sci. Technol. A, 29(1) (2011), p. 011024–1.

    Article  Google Scholar 

  38. B. Liebig, N.St.J. Braithwaite, P.J. Kelly, R. Chistyakov, B. Abraham, and J.W. Bradley, Surf. Coat. Technol. (2011) doi: 10.1016/j.surfcoat.2011.01.017.

  39. I. Petrov, L. Hultman, U. Helmersson, J.-E. Sundgren, and J.E. Greene, Thin Solid Films, 169 (1989), pp. 299–314.

    Article  CAS  Google Scholar 

  40. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, J. Vac. Sci. Technol. A, 21 (2003), p. S117.

    Article  CAS  Google Scholar 

  41. J. Lin, J.J. Moore, B. Mishra, M. Pinkus, W.D. Sproul, and J.A. Rees, Surf. Coat. Technol., 202 (2008), pp. 1418–1436.

    Article  CAS  Google Scholar 

  42. W.D. Sproul, Surf. Coat. Technol., 81 (1996), pp. 1–7.

    Article  CAS  Google Scholar 

  43. J.E. Greene, J-E. Sundgren, L. Hultman, I. Petrov, and D.B. Dergstrom, Appl. Phys. Lett., 67(20) (1995), pp. 2928–2930.

    Article  CAS  Google Scholar 

  44. J. Lin, W.D. Sproul, and J.J. Moore, “Influence of the Magnetic Field Strength on the Deposition Rate of Modulated Pulsed Power (MPP) Magnetron Sputtering of Metallic Thin Films” (Paper presented at the AVS 57th International Symposium & Exhibition, October 17–22, 2010, Albuquerque, New Mexico).

  45. J. Lin, W.D. Sproul, and J.J. Moore, “Effects of the Magnetic Field Strength on the DC Magnetron Sputtering and Modulated Pulsed Power Magnetron Sputtering of Metallic Films,” J. Vac. Sci. Tech. A (2011), submitted for publication.

  46. F. Papa and L. Peeters, “Excellent Test Results HIPIMS+,” Hauzer for You, 16 (Hauzer Techno Coating BV, The Netherlands; info@hauzer.nl) (2010), pp. 3–7.

    Google Scholar 

  47. J. Lin, W.D. Sproul, and J.J. Moore, “Structurally Laminated CrN Films Deposited by Multi Pulse Modulated Pulsed Power (MPMPP) Magnetron Sputtering,” Surf. Coat. Technol., submitted for publication.

  48. J. Lin, W.D. Sproul, J.J. Moore, S.L. Lee, and S. Myers, Surf. Coat. Technol., 205 (2011), pp. 3226–3234.

    Article  CAS  Google Scholar 

  49. J. Lin, W.D. Sproul, and J.J. Moore, “A Comparison of the Oxidation Behavior of CrN Films Deposited using Continuous dc, Pulsed dc and Modulated Pulsed Power (MPP) Magnetron Sputtering” Surf. Coat. Technol. (2011) submitted for publication.

  50. J.A. Thornton, Annual Review of Materials Science, 7 (1997), pp. 239–260.

    Article  Google Scholar 

  51. D.L. Smith, Thin Film Deposition (New York: Mc-Graw-Hill, 1995), pp. 197–200.

    Google Scholar 

  52. J. Baglin, Handbook of Ion Beam Processing Technology: Principle, Deposition, Film Modification and Synthesis (Westwood, NJ: Noyes Publications, 1989), pp. 279–299.

    Google Scholar 

  53. J. Lin, W.D. Sproul, and J.J. Moore, unpublished work (2011).

  54. N. Kanani, Electroplating-Basic Principles (Oxford, U.K.: Processes and Practice, 2005).

    Google Scholar 

  55. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings (New York: John Wiley, 1995).

    Google Scholar 

  56. D.A. Karpov, I.F. Kislov, A.I. Ryabchikov, and A.A. Ganenko, Surf. Coat. Technol., 89 (1997), pp. 58–61.

    Article  CAS  Google Scholar 

  57. D.W. Wheeler and R.J.K. Wood, Wear, 225–229 (1999), pp. 523–536.

    Article  Google Scholar 

  58. W. D. Sproul, Science, 273 (1996), pp. 889–892.

    Article  CAS  Google Scholar 

  59. P.C. Yashar and W.D. Sproul, Vacuum, 55 (1999), pp. 179–190.

    Article  CAS  Google Scholar 

  60. U. Helmersson, S. Todorova, S. A. Barnett, J.-E. Sundgren, L.Co. Markert, and J.E. Greene, J. Appl. Phys., 62(2) (1987), pp. 481–484.

    Article  CAS  Google Scholar 

  61. X. Chu, S.A. Barnett, M.S. Wong, and W.D. Sproul, Surf. Coat. Technol., 57 (1993), pp. 13–18.

    Article  CAS  Google Scholar 

  62. M. Nordin and M. Larsson, Surf. Coat. Technol., 116–119 (1999), pp. 108–115.

    Article  Google Scholar 

  63. J. Lin, J.J. Moore, B. Mishra, M. Pinkas, and W.D. Sproul, Surf. Coat. Technol., 204 (2009), pp. 936–940.

    Article  CAS  Google Scholar 

  64. J. Lin, B. Mishra, J.J. Moore, X.H. Zhang, and W.D. Sproul, Thin Solid Films, 517 (2009), pp. 5798–5804.

    Article  CAS  Google Scholar 

  65. J. Lin, W.D. Sproul, and J.J. Moore, “Thick CrN/AlN Superlattice Coatings Deposited by the Combined Pulsed DC Magnetron Sputtering (PMS) and Modulated Pulsed Power (MPP) Magnetron Sputtering Technique,” unpublished work (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Sproul, W.D., Moore, J.J. et al. Recent advances in modulated pulsed power magnetron sputtering for surface engineering. JOM 63, 48–58 (2011). https://doi.org/10.1007/s11837-011-0092-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0092-4

Keywords

Navigation