Skip to main content
Log in

The essential materials paradigms for regenerative medicine

  • Biomaterials for Regenerative Medicine
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Medical technology is changing rapidly. Several disease states can now be treated very effectively by implantable devices that restore mechanical and physical functionality, such as replacement of hip joints or restoration of heart rhythms by pacemakers. These techniques, however, are rather limited, and no biological functionality can be restored through the use of inert materials and devices. This paper explores the role of new types of biomaterials within the emerging area of regenerative medicine, where they are able to play a powerful role in persuading the human body to regenerate itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.F. Williams, Biomaterials, 29 (2009), pp. 2941–2953.

    Article  Google Scholar 

  2. A. Atala, R. Lanzo, J.A Thomson, and R. Nerem, editors, Principles of Regenerative Medicine, 2nd Edition (London: Academic Press, 2011).

    Google Scholar 

  3. E.A. Phelps and A.J. Garcia, Current Opinions in Biotechnology, 21 (2010), pp. 704–709.

    Article  CAS  Google Scholar 

  4. N. Huebsch and D.J. Mooney, Nature, 462(7272) (2009), pp. 426–432.

    Article  CAS  Google Scholar 

  5. J. Kopecek and J. Yong, Polymer International, 56 (2007), pp. 1078–1098.

    Article  CAS  Google Scholar 

  6. D.F. Williams, Trends in Biotechnology, 24 (2006), pp. 4–6.

    Article  CAS  Google Scholar 

  7. A. Atala, S.B. Bauer, S. Soker, J.J. Yoo, and A.D. Retik, Lancet, 367(9518) (2006), pp. 1241–1246.

    Article  Google Scholar 

  8. N. di Maggio, F. Piccinini, M. Jaworski, A. Trump, D. Wendt, and I. Martin, Biomaterials, 32 (2011), pp. 321–329.

    Article  Google Scholar 

  9. P.H. Warnke et al., Biomaterials, 27 (2006), pp. 3163–3167.

    Article  CAS  Google Scholar 

  10. M.R. Caplan and M.M. Shah, Cell Biochemistry and Biophysics, 54 (2009), pp. 1–10.

    Article  CAS  Google Scholar 

  11. L. Cen, W. Liu, L. Cui, W. Zhang, and Y. Cao, Pediatric Research, 63 (2008), pp. 492–496.

    Article  CAS  Google Scholar 

  12. N. Annabi, S.M. Mithieux, A.S. Weiss, and F. Dehghani, Biomaterials, 31 (2010), pp. 1655–1665.

    Article  CAS  Google Scholar 

  13. P. Sierpinski et al., Biomaterials, 29 (2008), pp. 118–128.

    Article  CAS  Google Scholar 

  14. A. Breen, T. O’Brien, and A. Pandit, Tissue Engineering Part A, 15 (2009) pp. 2010–2014.

    Google Scholar 

  15. J.A. Klunge, O.S Rabotyagova, G.C. Leisk, and D. Kaplan, Trends in Biotechnology, 26 (2008), pp. 244–251.

    Article  Google Scholar 

  16. T. Nie, R.E. Akins, and K.K. Klick, Acta Biomaterialia, 5 (2009), pp. 865–875.

    Article  CAS  Google Scholar 

  17. R.A.A Muzzarelli, Carbohydrate Polymers, 76 (2009), pp. 167–182.

    Article  CAS  Google Scholar 

  18. G.D. Prestwich and J.W. Kuo, Current Pharmaceutical Biotechnology, 9 (2008), pp. 242–245.

    Article  CAS  Google Scholar 

  19. O. Jeon, K.H. Bouhadir, J.M. Mansour, and E Alsberg, Biomaterials, 29 (2009), pp. 2724–2734.

    Article  Google Scholar 

  20. G Q. Chen and Q. Wu, Biomaterials, 26 (2005), pp. 6565–6578.

    Article  CAS  Google Scholar 

  21. E. Bible, D.Y.S. Chau, M.R. Alexander, J. Price, K.M. Shakesheff, and M. Modo, Biomaterials, 30 (2009), pp. 2985–2994.

    Article  CAS  Google Scholar 

  22. R.M. Namba, A.A. Cole, K.B. Blugstad, and M.J. Mahoney, Acta Biomaterialia, 5 (2009), pp. 1884–1897.

    Article  CAS  Google Scholar 

  23. C.A. Bashur, R.D. Shaffer, L.A. Dahlgren, S.A. Guelcher, and A.S. Goldstein, Tissue Engineering Part A, 15 (2009), pp. 2435–2445.

    Article  CAS  Google Scholar 

  24. S.M. Lien, L.J. Ko, and T.J. Huang, Acta Biomaterialia, 5 (2009), pp. 670–679.

    Article  CAS  Google Scholar 

  25. W. Bian and N. Bursac, Biomaterials, 30 (2009), pp. 1401–1412.

    Article  CAS  Google Scholar 

  26. F.P. W. Melchels, A.M.C. Barradas, C.A. van Blitterswijk, J. de Boer, J. Feijen, and D.W. Grijpma, Acta Biomaterialia, 6 (2010), pp. 4208–4217.

    Article  CAS  Google Scholar 

  27. N.D. Leipiz and M.S. Shoichet, Biomaterials, 30 (2009), pp. 6867–6878.

    Article  Google Scholar 

  28. D.O. Freytes, J. Martin, S.S. Velankar, A.S. Lee and S. F. Badylak, Biomaterials, 29 (2008), pp. 1630–1637.

    Article  CAS  Google Scholar 

  29. L. Li et al., J. Materials Chemistry, 19 (2009), pp. 2789–2796.

    Article  CAS  Google Scholar 

  30. G. Rohman, S.C. Baker, J. Southgate, and N.R. Cameron, J. Materials Chemistry, 19 (2009), pp. 9265–9273.

    Article  CAS  Google Scholar 

  31. A.W. Chan and R.J. Neufeld, Biomaterials, 30 (2009), pp. 6119–6129.

    Article  CAS  Google Scholar 

  32. C. Candrian et al., Arthritis and Rheumatism, 58 (2008), pp. 197–208.

    Article  CAS  Google Scholar 

  33. S. Masuda, T. Shimizu, and T. Okano, Advanced Drug Delivery Reviews, 60 (2008), pp. 277–285.

    Article  CAS  Google Scholar 

  34. C.J. Bettinger, R. Langer, and J.T. Borenstein, Angewandt Chemie International, 48 (2009), pp. 5406–5415.

    Article  CAS  Google Scholar 

  35. A.M. Martins et al., Tissue Engineering Part A, 15 (2009), pp. 2940–2945.

    Google Scholar 

  36. A.L. Becker, A.N. Zelikin, A.P.R. Johnston, and F. Caruso. Langmuir, 25 (2009), pp. 14079–14085.

    Article  CAS  Google Scholar 

  37. J.E. Reing et al., Tissue Engineering Part A, 15 (2009), pp. 605–614.

    Article  CAS  Google Scholar 

  38. M.D. Wood, G.H. Borschel, and S.E. Sakiyama-Elbert, J. Biomedical Materials Research, Part A, 89 (2009), pp. 909–918.

    Article  Google Scholar 

  39. C.C. Tate, D.A. Shear, M.C. Tate, D.R. Archer, D.G. Stein, and M.C. LaPlaca, J. Tissue Engineering and Regenerative Medicine, 3 (2009), pp. 208–217.

    Article  CAS  Google Scholar 

  40. S.J. Todd, D.J. Scurr, J.E. Gough, M.R. Alexander, and R.V. Ulijn, Langmuir, 25 (2009), pp. 7533–7539.

    Article  CAS  Google Scholar 

  41. F. Guilak, D.M. Cohen, B.T. Estes, J.M. Gimble, W. Liedtke, and C.S. Chen, Cell Stem Cell, 5 (2009), pp. 17–26.

    Article  CAS  Google Scholar 

  42. J.A. Burdick and G. Vuniak-Novakovic, Tissue Engineering Part A, 15 (2009), pp. 205–219.

    Article  CAS  Google Scholar 

  43. T.J. Nelson, A. Martinez-Fernandez, S. Yamada, C Perez-Terzoc, Y. Ikeda, and A. Terzic, Circulation, 120 (2009), pp. 408–416.

    Article  Google Scholar 

  44. N.D. Hsieh-Bonassera et al., Tissue Engineering Part A, 15 (2009), pp. 3513–3523.

    Article  CAS  Google Scholar 

  45. J.W. Bjork and R.T. Tranquillo, Biotechnology and Bioengineering, 104 (2009), pp. 1224–1234.

    Article  Google Scholar 

  46. C. Norotte, F.S. Marga, L.E. Niklason, and G. Forgacs, Biomaterials 30, (2009) pp. 5910–5917.

    Article  CAS  Google Scholar 

  47. C.P. Huang et al., Lab on a Chip, 9 (2009), pp. 1740–1748.

    Article  CAS  Google Scholar 

  48. D.F. Williams, Biomaterials, 30 (2009), pp. 5897–5909.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Williams.

Additional information

He is Editor-in-Chief of the journal Biomaterials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, D. The essential materials paradigms for regenerative medicine. JOM 63, 51–55 (2011). https://doi.org/10.1007/s11837-011-0067-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0067-5

Keywords

Navigation