Skip to main content
Log in

Hydrogen and deformation: Nano- and microindentation studies

  • Research Summary
  • Hydrogen Effects
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Utilizing indentation techniques coupled with atomic-force microscopy (AFM) and orientation-imaging microscopy (OIM), it is possible to identify both out-of-plane deformation and slip-band formation around nanoindentations. These effects are due to both strain hardening and cross slip. The effects of hydrogen on body-centered-cubic and face-centered-cubic alloys were tested using nano- and microindentation and show a distinctive change in deformation morphology. Localized slip steps on the surface were examined using OIM and AFM. The frequency of slip steps (number of planes between each step) is not significantly influenced by hydrogen concentration, but the overall height of each step is reduced in the presence of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Hirth, Met. Trans., 11A (1980), p. 861.

    CAS  Google Scholar 

  2. R.A. Oriani, Corrosion, 43 (1987), p. 390.

    CAS  Google Scholar 

  3. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum, Acta Mater., 47 (1999), p. 2991.

    Article  CAS  Google Scholar 

  4. Y. Katz, N. Tymiak, and W.W. Gerberich, Eng. Fracture Mech., 68 (2001), p. 619.

    Article  Google Scholar 

  5. D.S. Dugdale, J. Mech. Physics Solids, 2 (1954), p. 265.

    Article  Google Scholar 

  6. D.F. Bahr and W.W. Gerberich, Met. Trans., 27A (1996), p. 3793.

    CAS  Google Scholar 

  7. A.F. Bower, et al., Proc. Royal Soc., 441A (1993), p. 97.

    Article  Google Scholar 

  8. W. Zielinski, et al., Phil. Mag. A, 41 (1993), p. 2855.

    Google Scholar 

  9. T.F. Page, W.C. Oliver, and C.J. McHargue, J. Mater. Res., 7 (1992), p. 450.

    CAS  Google Scholar 

  10. K. Jatavallabhula and W.W. Gerberich, Fatigue Eng. Mater. Structures, 4 (1981), p. 173.

    Article  CAS  Google Scholar 

  11. Q. Yang, and J.L. Luo, Mater. Sci. Eng. A, A288 (2000), p. 75.

    CAS  Google Scholar 

  12. M. Pang and D.F. Bahr, J. Mater. Res., 16 (2001), p. 2634.

    Article  CAS  Google Scholar 

  13. D.F. Bahr, D.E. Kramer, and W.W. Gerberich, Acta Mater., 46 (1998), p. 3605.

    Article  CAS  Google Scholar 

  14. S.A. Syed Asif and J.B. Pethica, Phil. Mag. A 76 (1997), p. 1105.

    Google Scholar 

  15. A.B. Mann and J.B. Pethica, Appl. Phys. Lett., 69 (1996), p. 907.

    Article  CAS  Google Scholar 

  16. W.C. Oliver and G.M. Pharr, J. Mater. Res., 7 (1992), p. 1564.

    CAS  Google Scholar 

  17. W.W. Gerberich et al., Hydrogen in Metals, ed. I.M. Bernstein and A.W. Thompson. (Warrendale, PA: TMS, 1980) pp. 731–744.

    Google Scholar 

  18. K.L. Johnson, Contact Mechanics, (Cambridge, UK: Cambridge University Press, 1985), pp. 154–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact David F. Bahr at Washington State University, Mechanical and Materials Engineering, PO Box 642920, Pullman, WA, 99164-2920 (509) 335-8523; fax (509) 335-4662; e-mail bahr@mme.wsu.edu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahr, D., Field, D., Nibur, K. et al. Hydrogen and deformation: Nano- and microindentation studies. JOM 55, 47–50 (2003). https://doi.org/10.1007/s11837-003-0226-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-003-0226-4

Keywords

Navigation