Skip to main content
Log in

The Role of Artificial Neural Networks in Prediction of Mechanical and Tribological Properties of Composites—A Comprehensive Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The artificial neural network (ANN) approach motivated by the biological nervous system is an inspiring mathematical tool that simulates many complicated engineering applications. ANN learn from data and model real-life nonlinear and complex relationships; they can infer hidden relationships, thus making a generalized model and predicting unseen data. Unlike other prediction methods, ANN does not impose any restrictions on the variables and yields an accurate linear or nonlinear relationship between input and output parameters. Composite material properties depend on the composition, processing, and heat treatment relationships, and it is difficult to explain in terms of traditional methods. Implementing ANN in composites can significantly improve two major aspects: accuracy in modeling nonlinear relations and estimating the influence of many input parameters on material’s performance. Moreover, many studies have shown that ANNs are highly accurate in modeling the mechanical behavior and tribological characteristics of composite materials as a function of various process parameters. The primary goal of this paper is to provide the state of art literature review on the application of ANNs in modeling and predicting composites' properties and a direction for future researchers in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Kazi MK, Eljack F, Mahdi E (2020) Predictive ANN models for varying filler content for cotton fiber/PVC composites based on experimental load displacement curves. Compos Struct 254:112885. https://doi.org/10.1016/j.compstruct.2020.112885

    Article  Google Scholar 

  2. He C, Ma M, Wang P (2020) Extract interpretability-accuracy balanced rules from artificial neural networks: a review. Neurocomputing 387:346–358. https://doi.org/10.1016/j.neucom.2020.01.036

    Article  Google Scholar 

  3. Das L, Sivaram A, Venkatasubramanian V (2020) Hidden representations in deep neural networks: part 2 regression problems. Comput Chem Eng 139:106895. https://doi.org/10.1016/j.compchemeng.2020.106895

    Article  Google Scholar 

  4. Iseli E, Schiffmann J (2021) Prediction of the reaction forces of spiral-groove gas journal bearings by artificial neural network regression models. J Comput Sci. https://doi.org/10.1016/j.jocs.2020.101256

    Article  MathSciNet  Google Scholar 

  5. Arabi Bulaghi Z, Habibizad Navin A, Hosseinzadeh M, Rezaee A (2021) World competitive contest-based artificial neural network: a new class-specific method for classification of clinical and biological datasets. Genomics 113:541–552. https://doi.org/10.1016/j.ygeno.2020.09.047

    Article  Google Scholar 

  6. Abdelsalam MM (2020) Effective blood vessels reconstruction methodology for early detection and classification of diabetic retinopathy using OCTA images by artificial neural network. Inform Med Unlocked 20:100390. https://doi.org/10.1016/j.imu.2020.100390

    Article  Google Scholar 

  7. Revanasiddappa MB, Harish BS, Kumar SVA (2018) Meta-cognitive neural network based sequential learning framework for text categorization. Proced Comput Sci 132:1503–1511. https://doi.org/10.1016/j.procs.2018.05.104

    Article  Google Scholar 

  8. Ghiassi M, Olschimke M, Moon B, Arnaudo P (2012) Automated text classification using a dynamic artificial neural network model. Expert Syst Appl 39:10967–10976. https://doi.org/10.1016/j.eswa.2012.03.027

    Article  Google Scholar 

  9. Santolamazza A, Cesarotti V, Introna V (2018) Anomaly detection in energy consumption for condition-based maintenance of compressed air generation systems: an approach based on artificial neural networks. IFAC-PapersOnLine 51(11):1131–1136. https://doi.org/10.1016/j.ifacol.2018.08.439

    Article  Google Scholar 

  10. Staar B, Lütjen M, Freitag M (2019) Anomaly detection with convolutional neural networks for industrial surface inspection. Proced CIRP 79:484–489. https://doi.org/10.1016/j.procir.2019.02.123

    Article  Google Scholar 

  11. El-Midany TT, El-Baz MA, Abd-Elwahed MS (2010) A proposed framework for control chart pattern recognition in multivariate process using artificial neural networks. Expert Syst Appl 37:1035–1042. https://doi.org/10.1016/j.eswa.2009.05.092

    Article  Google Scholar 

  12. Zhao RH, Yue BF, Ni JY et al (1999) Application of an artificial neural network in chromatography—retention behavior prediction and pattern recognition. Chemom Intell Lab Syst 45:163–170. https://doi.org/10.1016/S0169-7439(98)00100-2

    Article  Google Scholar 

  13. Jolly KG, Ravindran KP, Vijayakumar R, Sreerama Kumar R (2007) Intelligent decision making in multi-agent robot soccer system through compounded artificial neural networks. Rob Auton Syst 55:589–596. https://doi.org/10.1016/j.robot.2006.12.011

    Article  Google Scholar 

  14. Stefanović ŠC, Bolanča T, Luša M et al (2012) Multi-criteria decision making development of ion chromatographic method for determination of inorganic anions in oilfield waters based on artificial neural networks retention model. Anal Chim Acta 716:145–154. https://doi.org/10.1016/j.aca.2011.12.020

    Article  Google Scholar 

  15. Casalino G, Facchini F, Mortello M, Mummolo G (2016) ANN modelling to optimize manufacturing processes: the case of laser welding. IFAC-PapersOnLine 49:378–383. https://doi.org/10.1016/j.ifacol.2016.07.634

    Article  Google Scholar 

  16. Ghosh AK, Verma V, Behera G (2015) An artificial neural network model to predict material characteristics from the results of miniature disk bending tests. J Press Vessel Technol Trans ASME 137:1–10. https://doi.org/10.1115/1.4027320

    Article  Google Scholar 

  17. Omotayo T, Bankole A, Olanipekun AO (2020) An artificial neural network approach to predicting most applicable post-contract cost controlling techniques in construction projects. Appl Sci. https://doi.org/10.3390/app10155171

    Article  Google Scholar 

  18. Sanli TV, Ercan G, Coker D, Kayran A (2018) Development of artificial neural network based design tool for aircraft engine bolted flange connection subject to combined axial and moment load. IMECE2017-70448:1–11. Doi: https://doi.org/10.1115/IMECE2017-70448

  19. Lee MR, Lee JH, Kim JT (2005) Condition monitoring of a nuclear power plant check valve based on acoustic emission and a neural network. J Press Vessel Technol Trans ASME 127:230–236. https://doi.org/10.1115/1.1991880

    Article  Google Scholar 

  20. Chowdhury S, Anand S (2016) Artificial neural network based geometric compensation for thermal deformation in additive manufacturing processes. ASME 2016 11th Int Manuf Sci Eng Conf MSEC 2016 3:1–10. Doi: https://doi.org/10.1115/MSEC20168784

  21. Ahmad A, Garhwal S, Ray SK et al (2021) The number of confirmed cases of covid-19 by using machine learning: methods and challenges. Arch Comput Methods Eng 28:2645–2653. https://doi.org/10.1007/s11831-020-09472-8

    Article  MathSciNet  Google Scholar 

  22. Swetapadma A, Yadav A (2018) An artificial neural network-based solution to locate the multilocation faults in double circuit series capacitor compensated transmission lines. Int Trans Electr Energy Syst 28:1–20. https://doi.org/10.1002/etep.2517

    Article  Google Scholar 

  23. Yavasoglu HA, Tetik YE, Ozcan HG (2020) Neural network-based energy management of multi-source (battery/UC/FC) powered electric vehicle. Int J Energy Res 44:12416–12429. https://doi.org/10.1002/er.5429

    Article  Google Scholar 

  24. Bekkari N, Zeddouri A (2019) Using artificial neural network for predicting and controlling the effluent chemical oxygen demand in wastewater treatment plant. Manag Environ Qual An Int J 30:593–608. https://doi.org/10.1108/MEQ-04-2018-0084

    Article  Google Scholar 

  25. Sumaiya Thaseen I, Saira Banu J, Lavanya K et al (2021) An integrated intrusion detection system using correlation-based attribute selection and artificial neural network. Trans Emerg Telecommun Technol 32:1–15. https://doi.org/10.1002/ett.4014

    Article  Google Scholar 

  26. Araujo CAS, Wanke P, Siqueira MM (2018) A performance analysis of Brazilian public health: TOPSIS and neural networks application. Int J Product Perform Manag 67:1526–1549. https://doi.org/10.1108/IJPPM-11-2017-0319

    Article  Google Scholar 

  27. Krajišnik D, Stepanović-Petrović R, Tomić M et al (2014) Application of artificial neural networks in prediction of diclofenac sodium release from drug-modified zeolites physical mixtures and antiedematous activity assessment. J Pharm Sci 103:1085–1094. https://doi.org/10.1002/jps.23869

    Article  Google Scholar 

  28. Coakley JR, Brown CE (2000) Artificial neural networks in accounting and finance: modeling issues. Int J Intell Syst Account Financ Manag 9:119–144. https://doi.org/10.1002/1099-1174(200006)9:2%3c119::aid-isaf182%3e3.0.co;2-y

    Article  Google Scholar 

  29. Rahmanpanah H, Mouloodi S, Burvill C et al (2020) Prediction of load-displacement curve in a complex structure using artificial neural networks: A study on a long bone. Int J Eng Sci 154:103319. https://doi.org/10.1016/j.ijengsci.2020.103319

    Article  MATH  Google Scholar 

  30. Marković J, Jović M, Smičiklas I et al (2016) Chemical speciation of metals in unpolluted soils of different types: correlation with soil characteristics and an ANN modelling approach. J Geochem Explor 165:71–80. https://doi.org/10.1016/j.gexplo.2016.03.004

    Article  Google Scholar 

  31. Lingaraju D, Ramji K, Mohan Rao NBR, Rajya Lakshmi U (2011) Characterization and prediction of some engineering properties of polymer—clay/silica hybrid nanocomposites through ANN and regression models. Proced Eng 10:9–18. https://doi.org/10.1016/j.proeng.2011.04.004

    Article  Google Scholar 

  32. Yu J, Wang H, Zhang J (2009) Neural network modeling and analysis of gel casting preparation of porous Si3N4 ceramics. Ceram Int 35:2943–2950. https://doi.org/10.1016/j.ceramint.2009.04.008

    Article  Google Scholar 

  33. Wang S, Wang Y, Gao H et al (2020) Synthesis and characterization of BaAl2O4: Ce and Mn-Ce- co-doped BaAl2O4 composite materials by a modified polyacrylamide gel method and prediction of photocatalytic activity using artificial neural network (ANN) algorithm. Optik (Stuttg) 221:165363. https://doi.org/10.1016/j.ijleo.2020.165363

    Article  Google Scholar 

  34. Ray K, Patra H, Swain AK et al (2020) Glass/jute/sisal fiber reinforced hybrid polypropylene polymer composites: fabrication and analysis of mechanical and water absorption properties. Mater Today Proc 33:5273–5278. https://doi.org/10.1016/j.matpr.2020.02.964

    Article  Google Scholar 

  35. Chethanbabu HM, Ramachandra M (2019) Evaluation of mechanical properties of polypropylene fibre reinforced epoxy composite filled with silicon carbide particulates. Mater Today Proc 46:4400–4406. https://doi.org/10.1016/j.matpr.2020.09.669

    Article  Google Scholar 

  36. Horníková K, Scheinherrová L, Štefan R, Foglar M (2020) Experimental investigation of physical, thermal, hygral and mechanical properties of cementitious composites at high temperatures. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119244

    Article  Google Scholar 

  37. Yang Z, Guo Z, Yang Z et al (2021) Study on tribological properties of a novel composite by filling microcapsules into UHMWPE matrix for water lubrication. Tribol Int 153:106629. https://doi.org/10.1016/j.triboint.2020.106629

    Article  Google Scholar 

  38. Pradeep P, Aravind Rao MY, Suresha B et al (2020) Mechanical behaviour and tribological properties of cenosphere-copper composites using design of experiments. Mater Today Proc 43:1798–1809. https://doi.org/10.1016/j.matpr.2020.10.494

    Article  Google Scholar 

  39. Suresh N, Balamurugan L, Vasantha Geethan KA, Sathish Kumar M (2020) Statistical analysis of mechanical properties of Al-SiC-WC and Al-SiC-Al2O3hybrid composites. Mater Today Proc 42:312–318. https://doi.org/10.1016/j.matpr.2020.09.211

    Article  Google Scholar 

  40. Khan SM, Malik SA, Gull N et al (2019) Fabrication and modelling of the macro-mechanical properties of cross-ply laminated fibre-reinforced polymer composites using artificial neural network. Adv Compos Mater 28:409–423. https://doi.org/10.1080/09243046.2019.1573448

    Article  Google Scholar 

  41. Thankachan T, Soorya Prakash K, Kamarthin M (2018) Optimizing the tribological behavior of hybrid copper surface composites using statistical and machine learning techniques. J Tribol. https://doi.org/10.1115/1.4038688

    Article  Google Scholar 

  42. Alam MA, Ya HH, Azeem M et al (2020) Modelling and optimisation of hardness behaviour of sintered Al/SiC composites using RSM and ANN: A comparative study. J Mater Res Technol 9:14036–14050. https://doi.org/10.1016/j.jmrt.2020.09.087

    Article  Google Scholar 

  43. Kannaiyan M, Karthikeyan G, Thankachi Raghuvaran JG (2020) Prediction of specific wear rate for LM25/ZrO2 composites using Levenberg-Marquardt backpropagation algorithm. J Mater Res Technol 9:530–538. https://doi.org/10.1016/j.jmrt.2019.10.082

    Article  Google Scholar 

  44. Nakhaei MR, Amir M, Ghasem N (2016) Optimization of mechanical properties of PP/EPDM/Clay nanocomposite fabricated by friction stir processing with response surface methodology and neural networks. Polym Compos 38(S1):421–432. https://doi.org/10.1002/pc.23942

    Article  Google Scholar 

  45. Nirmal U (2010) Prediction of friction coefficient of treated betelnut fibre reinforced polyester (T-BFRP) composite using artificial neural networks. Tribol Int 43:1417–1429. https://doi.org/10.1016/j.triboint.2010.01.013

    Article  Google Scholar 

  46. Zeng GS, Hu C, Zou S et al (2019) BP neural network model for predicting the mechanical performance of a foamed wood-fiber reinforced thermoplastic starch composite. Polym Compos 40:3923–3928. https://doi.org/10.1002/pc.25252

    Article  Google Scholar 

  47. Singh AK, Siddhartha HS (2015) Wear peculiarity of TiO2 filled polyester-based homogeneous composites and their functionally graded materials using taguchi methodology and ANN. Mater Today Proc 2:2718–2727. https://doi.org/10.1016/j.matpr.2015.07.239

    Article  Google Scholar 

  48. El Kadi H (2006) Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks—a review. Compos Struct 73:1–23. https://doi.org/10.1016/j.compstruct.2005.01.020

    Article  Google Scholar 

  49. Zhang Z, Friedrich K (2003) Artificial neural networks applied to polymer composites: a review. Compos Sci Technol 63:2029–2044. https://doi.org/10.1016/S0266-3538(03)00106-4

    Article  Google Scholar 

  50. Denyer D, Tranfield D (2009) Producing a Systematic Review. SAGE Handb. Organ. Res. Methods 671–689

  51. Agatonovic-Kustrin S, Zecevic M, Zivanovic LJ, Tucker IG (1998) Application of artificial neural networks in HPLC method development. J Pharm Biomed Anal 17:69–76. https://doi.org/10.1016/S0731-7085(97)00170-2

    Article  Google Scholar 

  52. Lippmann R (1987) An introduction to computing with neural nets. IEEE ASSP Mag 4(2):4–22. https://doi.org/10.1109/MASSP.1987.1165576

    Article  Google Scholar 

  53. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophy 5:115–133. https://doi.org/10.1007/BF02478259

    Article  MathSciNet  MATH  Google Scholar 

  54. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  55. Mizutani E, Dreyfus SE, Nishio K (2000) On derivation of MLP backpropagation from the Kelley-Bryson optimal-control gradient formula and its application. In: Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks. IJCNN 2000. Neural computing: new challenges and perspectives for the new millennium 2: 167–172. Doi: https://doi.org/10.1109/IJCNN.2000.857892

  56. Graves A, Liwicki M, Fernández S et al (2009) A novel connectionist system for unconstrained handwriting recognition. IEEE Trans Pattern Anal Mach Intell 31:855–868. https://doi.org/10.1109/TPAMI.2008.137

    Article  Google Scholar 

  57. Ciresan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: IEEE conference on computer vision and pattern recognition (CVPR), providence, RI pp. 3642–3649. Doi: https://doi.org/10.1109/CVPR.2012.6248110

  58. Lachhwani K (2020) Application of neural network models for mathematical programming problems: a state of art review. Arch Comput Methods Eng 27:171–182. https://doi.org/10.1007/s11831-018-09309-5

    Article  MathSciNet  Google Scholar 

  59. Datta D, Tassou SA (1998) Artificial neural network based electrical load prediction for food retail stores. Appl Therm Eng 18:1121–1128. https://doi.org/10.1016/S1359-4311(98)00034-9

    Article  Google Scholar 

  60. Pritha DN, Savitha L, Shylaja SS (2010) Face recognition by feedforward neural network using laplacian of gaussian filter and singular R-value decomposition. In: Proceedings 1st International Conference on Integrated Intelligent Computing ICIIC 2010 pp. 56–61. Doi: https://doi.org/10.1109/ICIIC.2010.8

  61. Zhang Y, Wang S, Ji G, Phillips P (2014) Fruit classification using computer vision and feedforward neural network. J Food Eng 143:167–177. https://doi.org/10.1016/j.jfoodeng.2014.07.001

    Article  Google Scholar 

  62. Wang GJ, Chen TC (1999) A robust parameters self-tuning learning algorithm for multi-layer feedforward neural network. Neurocomputing 25:167–189. https://doi.org/10.1016/S0925-2312(99)00059-4

    Article  MATH  Google Scholar 

  63. Svozil D, Kvasnička V, Pospíchal J (1997) Introduction to multi-layer feed-forward neural networks. Chemom Intell Lab Syst 39:43–62. https://doi.org/10.1016/S0169-7439(97)00061-0

    Article  Google Scholar 

  64. Rój E, Wilk M (1998) Simulation of an absorption column performance using feed-forward neural networks in nitric acid production. Comput Chem Eng 22:909–912. https://doi.org/10.1016/s0098-1354(98)00178-1

    Article  Google Scholar 

  65. Franco L, Cannas SA (1998) Solving arithmetic problems using feed-forward neural networks. Neurocomputing 18:61–79. https://doi.org/10.1016/S0925-2312(97)00069-6

    Article  Google Scholar 

  66. Gao F, Li M, Wang F et al (1999) Genetic algorithms and evolutionary programming hybrid strategy for structure and weight learning for multilayer feedforward neural networks. Ind Eng Chem Res 38:4330–4336. https://doi.org/10.1021/ie990256h

    Article  Google Scholar 

  67. Schmitz GPJ, Aldrich C (1999) Combinatorial evolution of regression nodes in feedforward neural networks. Neural Netw 12:175–189. https://doi.org/10.1016/S0893-6080(98)00104-X

    Article  Google Scholar 

  68. Powel MJD (1987) Radial basis functions for multivariable interpolation: A review. In: Mason JC, Cox MG (eds) IMA conference on algorithms for the approximation of functions and data (Royal military college of science). University Press, Oxford, pp 143–167

    Google Scholar 

  69. Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355

    MathSciNet  MATH  Google Scholar 

  70. Al-Haddad L, Morris CW, Boddy L (2000) Training radial basis function neural networks: effects of training set size and imbalanced training sets. J Microbiol Methods 43:33–44. https://doi.org/10.1016/S0167-7012(00)00202-5

    Article  Google Scholar 

  71. Sriyudthsak M, Teeramongkolrasasmee A, Moriizumi T (2000) Radial basis neural networks for identification of volatile organic compounds. Sens Actuators B Chem 65:358–360. https://doi.org/10.1016/S0925-4005(99)00400-1

    Article  Google Scholar 

  72. Bi T, Yan Z, Wen F et al (2002) On-line fault section estimation in power systems with radial basis function neural network. Int J Electr Power Energy Syst 24:321–328. https://doi.org/10.1016/S0142-0615(01)00037-0

    Article  Google Scholar 

  73. Lee KB, Cheon S, Kim CO (2017) A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes. IEEE Trans Semicond Manuf 30:135–142. https://doi.org/10.1109/TSM.2017.2676245

    Article  Google Scholar 

  74. Zhou Y, Wang H, Xu F, Jin YQ (2016) Polarimetric SAR image classification using deep convolutional neural networks. IEEE Geosci Remote Sens Lett 13:1935–1939. https://doi.org/10.1109/LGRS.2016.2618840

    Article  Google Scholar 

  75. Indolia S, Goswami AK, Mishra SP, Asopa P (2018) Conceptual understanding of convolutional neural network—a deep learning approach. Proced Comput Sci 132:679–688. https://doi.org/10.1016/j.procs.2018.05.069

    Article  Google Scholar 

  76. Qin J, Pan W, Xiang X et al (2020) A biological image classification method based on improved CNN. Ecol Inform 58:101093. https://doi.org/10.1016/j.ecoinf.2020.101093

    Article  Google Scholar 

  77. Lee S, Kim H, Lieu QX, Lee J (2020) CNN-based image recognition for topology optimization. Knowl-Based Syst 198:105887. https://doi.org/10.1016/j.knosys.2020.105887

    Article  Google Scholar 

  78. Tustison NJ, Avants BB, Gee JC (2019) Learning image-based spatial transformations via convolutional neural networks: a review. Magn Reson Imaging 64:142–153. https://doi.org/10.1016/j.mri.2019.05.037

    Article  Google Scholar 

  79. Wei Y (2000) Recurrent neural networks for computing weighted Moore-Penrose inverse. Appl Math Comput 116:279–287. https://doi.org/10.1016/S0096-3003(99)00147-2

    Article  MathSciNet  MATH  Google Scholar 

  80. Zhang Y, Wang J (2001) Recurrent neural networks for nonlinear output regulation. Automatica 37:1161–1173. https://doi.org/10.1016/S0005-1098(01)00092-9

    Article  MathSciNet  MATH  Google Scholar 

  81. Gao F, Wang F, Li M (2000) A simple nonlinear controller with diagonal recurrent neural network. Chem Eng Sci 55:1283–1288. https://doi.org/10.1016/S0009-2509(99)00399-1

    Article  Google Scholar 

  82. Hawas M (2020) Generated time-series prediction data of COVID-19′s daily infections in Brazil by using recurrent neural networks. Data Br 32:106175. https://doi.org/10.1016/j.dib.2020.106175

    Article  Google Scholar 

  83. Rius A, Ruisánchez I, Callao MP, Rius FX (1998) Reliability of analytical systems: Use of control charts, time series models and recurrent neural networks (RNN). Chemom Intell Lab Syst 40:1–18. https://doi.org/10.1016/S0169-7439(97)00085-3

    Article  Google Scholar 

  84. Auda G, Kamel M (1997) CMNN: cooperative modular neural networks for pattern recognition. Pattern Recognit Lett 18:1391–1398. https://doi.org/10.1016/S0167-8655(97)00108-6

    Article  MATH  Google Scholar 

  85. Chen K, Yang L, Yu X, Chi H (1997) A self-generating modular neural network architecture for supervised learning. Neurocomputing 16:33–48. https://doi.org/10.1016/S0925-2312(96)00057-4

    Article  Google Scholar 

  86. Pillutla S, Keyhani A (1997) Power system stabilization based on modular neural network architecture. Int J Electr Power Energy Syst 19:411–418. https://doi.org/10.1016/s0142-0615(97)00011-2

    Article  Google Scholar 

  87. Qiao J, Guo X, Li W (2020) An online self-organizing modular neural network for nonlinear system modeling. Appl Soft Comput J 97:106777. https://doi.org/10.1016/j.asoc.2020.106777

    Article  Google Scholar 

  88. Dhanumalayan E, Joshi GM (2018) Performance properties and applications of polytetrafluoroethylene (PTFE)—a review. Adv Compos Hybrid Mater 1:247–268. https://doi.org/10.1007/s42114-018-0023-8

    Article  Google Scholar 

  89. Luinge H, Warnet LL (2020) On an application of multi-material composite laminates in the aerospace sector. Adv Compos Hybrid Mater 3:294–302. https://doi.org/10.1007/s42114-020-00163-3

    Article  Google Scholar 

  90. Uddin MN, Gandy HTN, Rahman MM, Asmatulu R (2019) Adhesiveless honeycomb sandwich structures of prepreg carbon fiber composites for primary structural applications. Adv Compos Hybrid Mater 2:339–350. https://doi.org/10.1007/s42114-019-00096-6

    Article  Google Scholar 

  91. Khater HM (2019) Valorization of cement kiln dust in activation and production of hybrid geopolymer composites with durable characteristics. Adv Compos Hybrid Mater 2:301–311. https://doi.org/10.1007/s42114-019-00097-5

    Article  Google Scholar 

  92. Rubino F, Nisticò A, Tucci F, Carlone P (2020) Marine application of fiber reinforced composites: a review. J Mar Sci Eng. https://doi.org/10.3390/JMSE8010026

    Article  Google Scholar 

  93. Gyftou P, Pavlatou EA, Spyrellis N, Hatzilyberis KS (2000) Nickel matrix composite coatings: application in textile machinery and evaluation of cotton products quality. Trans Inst Met Finish 78:223–226. https://doi.org/10.1080/00202967.2000.11871345

    Article  Google Scholar 

  94. Naveen J, Jawaid M, Zainudin ES et al (2019) Evaluation of ballistic performance of hybrid Kevlar®/Cocos nucifera sheath reinforced epoxy composites. J Text Inst 110:1179–1189. https://doi.org/10.1080/00405000.2018.1548801

    Article  Google Scholar 

  95. Asmatulu R, Bollavaram PK, Patlolla VR et al (2020) Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding. Adv Compos Hybrid Mater 3:66–83. https://doi.org/10.1007/s42114-020-00135-7

    Article  Google Scholar 

  96. Vacaras S, Baciut M, Lucaciu O et al (2019) Understanding the basis of medical use of poly-lactide-based resorbable polymers and composites–a review of the clinical and metabolic impact. Drug Metab Rev 51:570–588. https://doi.org/10.1080/03602532.2019.1642911

    Article  Google Scholar 

  97. Karthik K, Manimaran A, Udayaprakash J (2021) Experimental investigation of the distortion temperature parameter of polymer matrix composites for solar panel applications. Int J Ambient Energy 42:500–504. https://doi.org/10.1080/01430750.2018.1557547

    Article  Google Scholar 

  98. Griffin DWP, Mirza O, Kwok K, Kaewunruen S (2014) Composite slabs for railway construction and maintenance: a mechanistic review. IES J Part A Civ Struct Eng 7:243–262. https://doi.org/10.1080/19373260.2014.947909

    Article  Google Scholar 

  99. Amalraj A, Haponiuk JT, Thomas S, Gopi S (2020) Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. Int J Biol Macromol 151:366–375. https://doi.org/10.1016/j.ijbiomac.2020.02.176

    Article  Google Scholar 

  100. Das TK, Ghosh P, Das NC (2019) Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Adv Compos Hybrid Mater 2:214–233. https://doi.org/10.1007/s42114-018-0072-z

    Article  Google Scholar 

  101. Mhaske MS, Shirsat UM (2021) An investigation of mechanical properties of aluminium based silicon carbide (AlSiC) metal matrix composite by different manufacturing methods. Mater Today Proc 44:376–382. https://doi.org/10.1016/j.matpr.2020.09.746

    Article  Google Scholar 

  102. Ceschini L, Bosi C, Casagrande A, Garagnani GL (2001) Effect of thermal treatment and recycling on the tribological behaviour of an AlSiMg-SiCp composite. Wear 250:1377–1385. https://doi.org/10.1016/S0043-1648(01)00782-7

    Article  Google Scholar 

  103. Lu J, Yang S, Wang J, Xue Q (2001) Mechanical and tribological properties of Ni-based alloy/CeF3/graphite high temperature self-lubricating composites. Wear 249:1070–1076. https://doi.org/10.1016/S0043-1648(01)00846-8

    Article  Google Scholar 

  104. Guo G, Finkenstadt VL, Nimmagadda Y (2019) Mechanical properties and water absorption behavior of injection-molded wood fiber/carbon fiber high-density polyethylene hybrid composites. Adv Compos Hybrid Mater 2:690–700. https://doi.org/10.1007/s42114-019-00116-5

    Article  Google Scholar 

  105. Ashok RB, Srinivasa CV, Basavaraju B (2019) Dynamic mechanical properties of natural fiber composites—a review. Adv Compos Hybrid Mater 2:586–607. https://doi.org/10.1007/s42114-019-00121-8

    Article  Google Scholar 

  106. He XB (2002) Effect of sintering additives on mechanical properties of Cf/SiC composites. Mater Chem Phys 74:300–305. https://doi.org/10.1016/S0254-0584(01)00482-5

    Article  Google Scholar 

  107. Sun W, Tzeng JT (2002) Effective mechanical properties of EM composite conductors: an analytical and finite element modeling approach. Compos Struct 58:411–421. https://doi.org/10.1016/S0263-8223(02)00129-0

    Article  Google Scholar 

  108. Murthy TSRC, Basu B, Srivastava A et al (2006) Tribological properties of TiB2 and TiB2 - MoSi2 ceramic composites. J Eur Ceram Soc 26:1293–1300. https://doi.org/10.1016/j.jeurceramsoc.2005.01.054

    Article  Google Scholar 

  109. Liu WM, Chen YX, Kou GT et al (2003) Characterization and mechanical/tribological properties of nano Au-TiO2 composite thin films prepared by a sol-gel process. Wear 254:994–1000. https://doi.org/10.1016/S0043-1648(03)00305-3

    Article  Google Scholar 

  110. Gomes JR, Silva OM, Silva CM et al (2001) The effect of sliding speed and temperature on the tribological behavior of carbon-carbon composites. Wear 249:240–245. https://doi.org/10.1016/S0043-1648(01)00554-3

    Article  Google Scholar 

  111. Cai H, Yan F, Xue Q, Liu W (2003) Investigation of tribological properties of Al2O 3-polyimide nanocomposites. Polym Test 22:875–882. https://doi.org/10.1016/S0142-9418(03)00024-2

    Article  Google Scholar 

  112. Gayatri Vineela M, Dave A, Kiran Chaganti P (2018) Artificial neural network based prediction of tensile strength of hybrid composites. Mater Today Proc 5:19908–19915. https://doi.org/10.1016/j.matpr.2018.06.356

    Article  Google Scholar 

  113. Sen F, Aydin Komur M, Sayman O (2010) Prediction of bearing strength of two serial pinned/bolted composite joints using artificial neural networks. J Compos Mater 44:1365–1377. https://doi.org/10.1177/0021998309353344

    Article  Google Scholar 

  114. Hossain KMA, Anwar MS, Samani SG (2018) Regression and artificial neural network models for strength properties of engineered cementitious composites. Neural Comput Appl 29:631–645. https://doi.org/10.1007/s00521-016-2602-3

    Article  Google Scholar 

  115. Jiang Z, Zhang Z, Friedrich K (2007) Prediction on wear properties of polymer composites with artificial neural networks. Compos Sci Technol 67:168–176. https://doi.org/10.1016/j.compscitech.2006.07.026

    Article  Google Scholar 

  116. Kurpinska M, Kułak L (2019) Predicting performance of lightweight concrete with granulated expanded Glass and Ash aggregate by means of using Artificial Neural Networks. Materials (Basel). https://doi.org/10.3390/ma12122002

    Article  Google Scholar 

  117. Koker R, Altinkok N, Demir A (2007) Neural network based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms. Mater Des 28:616–627. https://doi.org/10.1016/j.matdes.2005.07.021

    Article  Google Scholar 

  118. Varol T, Canakci A, Ozsahin S (2018) Prediction of effect of reinforcement content, flake size and flake time on the density and hardness of flake AA2024-SiC nanocomposites using neural networks. J Alloys Compd 739:1005–1014. https://doi.org/10.1016/j.jallcom.2017.12.256

    Article  Google Scholar 

  119. Vinoth A, Datta S (2020) Optimization of mechanical characteristics of uhmwpe composites using computational intelligence. Springer Singapore, Singapore. https://doi.org/10.1007/978-981-13-8767-8_17

    Book  Google Scholar 

  120. Nwobi-Okoye CC, Uzochukwu CU (2020) RSM and ANN modeling for production of Al 6351/ egg shell reinforced composite: multi objective optimization using genetic algorithm. Mater Today Commun 22:100674. https://doi.org/10.1016/j.mtcomm.2019.100674

    Article  Google Scholar 

  121. Devadiga U, Poojary RKR, Fernandes P (2019) Artificial neural network technique to predict the properties of multiwall carbon nanotube-fly ash reinforced aluminium composite. J Mater Res Technol 8:3970–3977. https://doi.org/10.1016/j.jmrt.2019.07.005

    Article  Google Scholar 

  122. Pandian V, Kannan S (2021) Processing and preparation of aerospace-grade aluminium hybrid metal matrix composite in a modified stir casting furnace integrated with mechanical supersonic vibration squeeze infiltration method. Mater Today Commun 26:101732. https://doi.org/10.1016/j.mtcomm.2020.101732

    Article  Google Scholar 

  123. Muhammad A, Rahman MR, Baini R, Bin Bakri MK (2021) Applications of sustainable polymer composites in automobile and aerospace industry. Adv Sustain Polym Compos. https://doi.org/10.1016/B978-0-12-820338-5.00008-4

  124. Bezerra EM, Ancelotti AC, Pardini LC et al (2007) Artificial neural networks applied to epoxy composites reinforced with carbon and E-glass fibers: analysis of the shear mechanical properties. Mater Sci Eng A 464:177–185. https://doi.org/10.1016/j.msea.2007.01.131

    Article  Google Scholar 

  125. Kabbani MS, El Kadi HA (2019) Predicting the effect of cooling rate on the mechanical properties of glass fiber–polypropylene composites using artificial neural networks. J Thermoplast Compos Mater 32:1268–1281. https://doi.org/10.1177/0892705718792351

    Article  Google Scholar 

  126. Ye S, Li B, Li Q et al (2019) Deep neural network method for predicting the mechanical properties of composites. Appl Phys Lett. https://doi.org/10.1063/1.5124529

    Article  Google Scholar 

  127. Xie K, Nie J, Ma X, Liu X (2020) Increasing the ductility of heat-resistant AlNp/Al composites by submicron Al2O3 particles. Mater Charact 170:110672. https://doi.org/10.1016/j.matchar.2020.110672

    Article  Google Scholar 

  128. Zhang SL, Zhang ZX, Xin ZX et al (2010) Prediction of mechanical properties of polypropylene/waste ground rubber tire powder treated by bitumen composites via uniform design and artificial neural networks. Mater Des 31:1900–1905. https://doi.org/10.1016/j.matdes.2009.10.057

    Article  Google Scholar 

  129. Altarazi S, Ammouri M, Hijazi A (2018) Artificial neural network modeling to evaluate polyvinylchloride composites’ properties. Comput Mater Sci 153:1–9. https://doi.org/10.1016/j.commatsci.2018.06.003

    Article  Google Scholar 

  130. Atuanya CU, Government MR, Nwobi-Okoye CC, Onukwuli OD (2014) Predicting the mechanical properties of date palm wood fibre-recycled low density polyethylene composite using artificial neural network. Int J Mech Mater Eng 9:1–20. https://doi.org/10.1186/s40712-014-0007-6

    Article  Google Scholar 

  131. Rueda-García L, Bonet Senach JL, Miguel Sosa PF, Fernández Prada MÁ (2021) Experimental analysis of the shear strength of composite concrete beams without web reinforcement. Eng Struct. https://doi.org/10.1016/j.engstruct.2020.111664

    Article  Google Scholar 

  132. Vardhan DH, Ramesh A, Reddy BCM (2020) Effect of ceramic fillers on flexural strength of the GFRP composite material. Mater Today Proc 37:1739–1742. https://doi.org/10.1016/j.matpr.2020.07.356

    Article  Google Scholar 

  133. Jayabal S, Rajamuneeswaran S, Ramprasath R, Balaji NS (2013) Artificial neural network modeling of mechanical properties of calcium carbonate impregnated coir-polyester composites. Trans Indian Inst Met 66:247–255. https://doi.org/10.1007/s12666-013-0255-9

    Article  Google Scholar 

  134. Shyam S, Kaul S, Kalsara N, Babu TN (2021) Mechanical behaviour and microscopic analysis of epoxy and E-glass reinforced banyan fibre composites with the application of artificial neural network and deep neural network for the automatic prediction of orientation. J Compos Mater 55:213–234. https://doi.org/10.1177/0021998320947136

    Article  Google Scholar 

  135. Prasad GLE, Gowda BSK, Velmurugan R (2016) Prediction of flexural properties of coir polyester composites by ANN. Conf Proc Soc Exp Mech Ser 7:173–180. https://doi.org/10.1007/978-3-319-21762-8_21

    Article  Google Scholar 

  136. Chandra Shekar K, Singaravel B, Deva Prasad S et al (2020) Mode-I fracture toughness of glass/carbon fiber reinforced epoxy matrix polymer composite. Mater Today Proc 41:833–837. https://doi.org/10.1016/j.matpr.2020.09.160

    Article  Google Scholar 

  137. Zando RB, Mesgarnejad A, Pan C et al (2021) Enhanced toughness in ceramic-reinforced polymer composites with herringbone architectures. Compos Sci Technol 204:108513. https://doi.org/10.1016/j.compscitech.2020.108513

    Article  Google Scholar 

  138. Sharma A, Kushvaha V (2020) Predictive modelling of fracture behaviour in silica-filled polymer composite subjected to impact with varying loading rates using artificial neural network. Eng Fract Mech 239:107328. https://doi.org/10.1016/j.engfracmech.2020.107328

    Article  Google Scholar 

  139. Yang C, Kim Y, Ryu S, Gu GX (2019) Using convolutional neural networks to predict composite properties beyond the elastic limit. MRS Commun 9:609–617. https://doi.org/10.1557/mrc.2019.49

    Article  Google Scholar 

  140. Jia-li T, Yi-jun L, Fang-sheng W (2010) Neural network for prediction of composite mechanical properties based on niche genetic algorithm. Int Conf Netw Digit Soc. https://doi.org/10.1109/ICNDS.2010.5479616

  141. Fazilat H, Ghatarband M, Mazinani S et al (2012) Predicting the mechanical properties of glass fiber reinforced polymers via artificial neural network and adaptive neuro-fuzzy inference system. Comput Mater Sci 58:31–37. https://doi.org/10.1016/j.commatsci.2012.01.012

    Article  Google Scholar 

  142. Soundararajan R, Ramesh A, Sivasankaran S, Vignesh M (2017) Modeling and analysis of mechanical properties of aluminium alloy (A413) reinforced with boron carbide (B4C) processed through squeeze casting process using artificial neural network model and statistical technique. Mater Today Proc 4:2008–2030. https://doi.org/10.1016/j.matpr.2017.02.047

    Article  Google Scholar 

  143. Banerjee T, Dey S, Sekhar AP et al (2020) Design of alumina reinforced aluminium alloy composites with improved tribo-mechanical properties: a machine learning approach. Trans Indian Inst Met 73:3059–3069. https://doi.org/10.1007/s12666-020-02108-2

    Article  Google Scholar 

  144. Gupta VK, Kwatra N, Ray S (2007) Artificial neural network modeling of creep behavior in a rotating composite disc. Eng Comput (Swansea, Wales) 24:151–164. https://doi.org/10.1108/02644400710729545

    Article  MATH  Google Scholar 

  145. Ahmed TM, Green PL, Khalid HA (2017) Predicting fatigue performance of hot mix asphalt using artificial neural networks. Road Mater Pavement Des 18:141–154. https://doi.org/10.1080/14680629.2017.1306928

    Article  Google Scholar 

  146. Bezazi A, Pierce SG, Worden K, Harkati EH (2007) Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network. Int J Fatigue 29:738–747. https://doi.org/10.1016/j.ijfatigue.2006.06.013

    Article  Google Scholar 

  147. Wang YS, Linghu RK, Zhang W et al (2020) Study on deformation behavior in supercooled liquid region of a Ti-based metallic glassy matrix composite by artificial neural network. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.155761

    Article  Google Scholar 

  148. Doblies A, Boll B, Fiedler B (2019) Prediction of thermal exposure and mechanical behavior of epoxy resin using artificial neural networks and Fourier transform infrared spectroscopy. Polymers (Basel). https://doi.org/10.3390/POLYM11020363

    Article  Google Scholar 

  149. Celik HH, Gunduz O, Ekren N et al (2011) Predicting the mechanical properties of BHA-Li2O composites using artificial neural networks. J Biomater Nanobiotechnol 02:98–101. https://doi.org/10.4236/jbnb.2011.21013

    Article  Google Scholar 

  150. İnal M, Sahin S, Sahin Y (2018) Optimization of the Young’s modulus of low flow polypropylene Talc/Colemanite hybrid composite materials with artificial neural networks. IFAC-PapersOnLine 51:277–281. https://doi.org/10.1016/j.ifacol.2018.11.301

    Article  Google Scholar 

  151. Amirjan M, Khorsand H, Siadati MH, Eslami Farsani R (2013) Artificial neural network prediction of Cu-Al2O3 composite properties prepared by powder metallurgy method. J Mater Res Technol 2:351–355. https://doi.org/10.1016/j.jmrt.2013.08.001

    Article  Google Scholar 

  152. Canakci A, Ozsahin S, Varol T (2012) Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks. Powder Technol 228:26–35. https://doi.org/10.1016/j.powtec.2012.04.045

    Article  Google Scholar 

  153. Hammoudi A, Moussaceb K, Belebchouche C, Dahmoune F (2019) Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Constr Build Mater 209:425–436. https://doi.org/10.1016/j.conbuildmat.2019.03.119

    Article  Google Scholar 

  154. Jalham IS (2003) Modeling capability of the artificial neural network (ANN) to predict the effect of the hot deformation parameters on the strength of Al-base metal matrix composites. Compos Sci Technol 63:63–67. https://doi.org/10.1016/S0266-3538(02)00176-8

    Article  Google Scholar 

  155. Negro C, Alonso A, Blanco A, Tijero J (2005) Breaking load and bending strength prediction in manufacture of fibre cement composites using artificial neural networks and a flocculation sensor. Compos Part A Appl Sci Manuf 36:1617–1626. https://doi.org/10.1016/j.compositesa.2005.04.008

    Article  Google Scholar 

  156. Sankar LP, Sivasankar S, Shunmugasundaram M, Kumar AP (2020) Predicting the polymer modified ferrocement ultimate flexural strength using artificial neural network and adaptive network based fuzzy inference system. Mater Today Proc 27:1375–1380. https://doi.org/10.1016/j.matpr.2020.02.760

    Article  Google Scholar 

  157. Zhang Z, Klein P, Friedrich K (2002) Dynamic mechanical properties of PTFE based short carbon fibre reinforced composites: experiment and artificial neural network prediction. Compos Sci Technol 62:1001–1009. https://doi.org/10.1016/S0266-3538(02)00036-2

    Article  Google Scholar 

  158. Al-Assaf Y, El Kadi H (2001) Fatigue life prediction of unidirectional glass fiber/epoxy composite laminae using neural networks. Compos Struct 53:65–71. https://doi.org/10.1016/S0263-8223(00)00179-3

    Article  Google Scholar 

  159. Al-Haik MS, Hussaini MY, Garmestani H (2006) Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network. Int J Plast 22:1367–1392. https://doi.org/10.1016/j.ijplas.2005.09.002

    Article  MATH  Google Scholar 

  160. Burgaz E, Yazici M, Kapusuz M et al (2014) Prediction of thermal stability, crystallinity and thermomechanical properties of poly(ethylene oxide)/clay nanocomposites with artificial neural networks. Thermochim Acta 575:159–166. https://doi.org/10.1016/j.tca.2013.10.032

    Article  Google Scholar 

  161. Haj-Ali R, Kim HK (2007) Nonlinear constitutive models for FRP composites using artificial neural networks. Mech Mater 39:1035–1042. https://doi.org/10.1016/j.mechmat.2007.05.004

    Article  Google Scholar 

  162. Jalal M, Ramezanianpour AA (2012) Strength enhancement modeling of concrete cylinders confined with CFRP composites using artificial neural networks. Compos Part B Eng 43:2990–3000. https://doi.org/10.1016/j.compositesb.2012.05.044

    Article  Google Scholar 

  163. Naderpour H, Poursaeidi O, Ahmadi M (2018) Shear resistance prediction of concrete beams reinforced by FRP bars using artificial neural networks. Meas J Int Meas Confed 126:299–308. https://doi.org/10.1016/j.measurement.2018.05.051

    Article  Google Scholar 

  164. Tiryaki S, Hamzaçebi C (2014) Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by artificial neural networks. Meas J Int Meas Confed 49:266–274. https://doi.org/10.1016/j.measurement.2013.12.004

    Article  Google Scholar 

  165. Park HI, Kim YT (2011) Prediction of strength of reinforced lightweight soil using an artificial neural network. Eng Comput (Swansea, Wales) 28:600–615. https://doi.org/10.1108/02644401111141037

    Article  MATH  Google Scholar 

  166. Kesavan A, John S, Li H, Herszberg I (2010) A comparative study of statistical outlier analysis and ANN methods for damage detection and assessment in composite structures. J Intell Mater Syst Struct 21:337–347. https://doi.org/10.1177/1045389X09343027

    Article  Google Scholar 

  167. Xu X, Elgamal M, Doddamani M, Gupta N (2021) Tailoring composite materials for nonlinear viscoelastic properties using artificial neural networks. J Compos Mater 55:1547–1560. https://doi.org/10.1177/0021998320973744

    Article  Google Scholar 

  168. Hejazi SM, Sheikhzadeh M, Abtahi SM et al (2014) Using slippage theory to analyze shear behavior of loop-formed fiber reinforced soil composites. J Ind Text 43:415–439. https://doi.org/10.1177/1528083712458304

    Article  Google Scholar 

  169. Sosimi AA, Gbenebor OP, Oyerinde O et al (2020) Analysing wear behaviour of Al–CaCO3 composites using ANN and Sugeno-type fuzzy inference systems. Neural Comput Appl 32:13453–13464. https://doi.org/10.1007/s00521-020-04753-6

    Article  Google Scholar 

  170. Tan ZX, Thambiratnam DP, Chan THT et al (2020) Damage detection in steel-concrete composite bridge using vibration characteristics and artificial neural network. Struct Infrastruct Eng 16:1247–1261. https://doi.org/10.1080/15732479.2019.1696378

    Article  Google Scholar 

  171. Aguilar V, Sandoval C, Adam JM et al (2016) Prediction of the shear strength of reinforced masonry walls using a large experimental database and artificial neural networks. Struct Infrastruct Eng 12:1661–1674. https://doi.org/10.1080/15732479.2016.1157824

    Article  Google Scholar 

  172. Bilgehan M, Turgut P (2010) Artificial neural network approach to predict compressive strength of concrete through ultrasonic pulse velocity. Res Nondestruct Eval 21:1–17. https://doi.org/10.1080/09349840903122042

    Article  Google Scholar 

  173. Xu X, Gupta N (2019) Artificial neural network approach to predict the elastic modulus from dynamic mechanical analysis results. Adv Theory Simulations 2:1–8. https://doi.org/10.1002/adts.201800131

    Article  Google Scholar 

  174. Sresungsuwan N, Hansupalak N (2013) Prediction of mechanical properties of compatibilized styrene/natural- rubber blend by using reaction conditions: central composite design vs. artificial neural networks. J Appl Polym Sci 127:356–365. https://doi.org/10.1002/app.37550

    Article  Google Scholar 

  175. Messner MC (2020) Convolutional neural network surrogate models for the mechanical properties of periodic structures. J Mech Des Trans ASME 142:1–6. https://doi.org/10.1115/1.4045040

    Article  Google Scholar 

  176. Allegri G (2018) Modelling fatigue delamination growth in fibre-reinforced composites: power-law equations or artificial neural networks? Mater Des 155:59–70. https://doi.org/10.1016/j.matdes.2018.05.049

    Article  Google Scholar 

  177. Su Z, Ye L (2004) Lamb wave-based quantitative identification of delamination in CF/EP composite structures using artificial neural algorithm. Compos Struct 66:627–637. https://doi.org/10.1016/j.compstruct.2004.05.011

    Article  Google Scholar 

  178. Bhat C, Bhat MR, Murthy CRL (2008) Characterization of failure modes in CFRP composites—an ANN approach. J Compos Mater 42:257–276. https://doi.org/10.1177/0021998307086209

    Article  Google Scholar 

  179. Ajagbe WO, Ganiyu AA, Owoyele MO, Labiran JO (2013) Modeling the effect of crude oil impacted sand on the properties of concrete using artificial neural networks. ISRN Civ Eng 2013:1–5. https://doi.org/10.1155/2013/609379

    Article  Google Scholar 

  180. Al-Swaidani AM, Khwies WT (2018) Applicability of artificial neural networks to predict mechanical and permeability properties of volcanic scoria-based concrete. Adv Civ Eng. https://doi.org/10.1155/2018/5207962

    Article  Google Scholar 

  181. Baldo N, Manthos E, Pasetto M (2018) Analysis of the mechanical behaviour of asphalt concretes using artificial neural networks. Adv Civ Eng. https://doi.org/10.1155/2018/1650945

    Article  Google Scholar 

  182. Khanam PN, Almaadeed M, Almaadeed S et al (2016) Optimization and prediction of mechanical and thermal properties of Graphene/LLDPE nanocomposites by using artificial neural networks. Int J Polym Sci. https://doi.org/10.1155/2016/5340252

    Article  Google Scholar 

  183. Tran VL, Thai DK, Nguyen DD (2020) Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete. Thin-Walled Struct 151:106720. https://doi.org/10.1016/j.tws.2020.106720

    Article  Google Scholar 

  184. Mashhadban H, Kutanaei SS, Sayarinejad MA (2016) Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network. Constr Build Mater 119:277–287. https://doi.org/10.1016/j.conbuildmat.2016.05.034

    Article  Google Scholar 

  185. Xiang KL, Xiang PY, Wu YP (2014) Prediction of the fatigue life of natural rubber composites by artificial neural network approaches. Mater Des 57:180–185. https://doi.org/10.1016/j.matdes.2013.12.044

    Article  Google Scholar 

  186. Conceição António C, Rasheed S (2018) A displacement field approach based on FEM-ANN and experiments for identification of elastic properties of composites. Int J Adv Manuf Technol 95:4279–4291. https://doi.org/10.1007/s00170-017-1439-y

    Article  Google Scholar 

  187. Jiang Z, Gyurova L, Zhang Z et al (2008) Neural network based prediction on mechanical and wear properties of short fibers reinforced polyamide composites. Mater Des 29:628–637. https://doi.org/10.1016/j.matdes.2007.02.008

    Article  Google Scholar 

  188. Karbalaei Akbari M, Shirvanimoghaddam K, Hai Z et al (2017) Nano TiB2 and TiO2 reinforced composites: a comparative investigation on strengthening mechanisms and predicting mechanical properties via neural network modeling. Ceram Int 43:16799–16810. https://doi.org/10.1016/j.ceramint.2017.09.077

    Article  Google Scholar 

  189. Natrayan L, Senthil Kumar M (2020) An integrated artificial neural network and Taguchi approach to optimize the squeeze cast process parameters of AA6061/Al2O3/SiC/Gr hybrid composites prepared by novel encapsulation feeding technique. Mater Today Commun 25:101586. https://doi.org/10.1016/j.mtcomm.2020.101586

    Article  Google Scholar 

  190. Varol T, Canakci A, Ozsahin S (2013) Artificial neural network modeling to effect of reinforcement properties on the physical and mechanical properties of Al2024-B4C composites produced by powder metallurgy. Compos Part B Eng 54:224–233. https://doi.org/10.1016/j.compositesb.2013.05.015

    Article  Google Scholar 

  191. Wang B, Ma JH, Wu YP (2013) Application of artificial neural network in prediction of abrasion of rubber composites. Mater Des 49:802–807. https://doi.org/10.1016/j.matdes.2013.01.047

    Article  Google Scholar 

  192. Zhang SL, Zhang ZX, Pal K et al (2010) Prediction of mechanical properties of waste polypropylene/waste ground rubber tire powder blends using artificial neural networks. Mater Des 31:3624–3629. https://doi.org/10.1016/j.matdes.2010.02.039

    Article  Google Scholar 

  193. Akbari M, Asadi P, Zolghadr P, Khalkhali A (2018) Multicriteria optimization of mechanical properties of aluminum composites reinforced with different reinforcing particles type. Proc Inst Mech Eng Part E J Process Mech Eng 232:323–337. https://doi.org/10.1177/0954408917704994

    Article  Google Scholar 

  194. Altinkök N (2019) Modeling of the mechanical and physical properties of hybrid composites produced by gas pressure infiltration. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-018-1518-5

    Article  Google Scholar 

  195. Prasad GLE, Gowda BSK, Velmurugan R (2014) Prediction of properties of coir fiber reinforced composite by ANN. In: Tandon G, Tekalur S, Ralph C, Sottos N, Blaiszik B (eds) Experimental mechanics of composite, hybrid, and multifunctional materials. 6. Conference proceedings of the society for experimental mechanics series. Doi: https://doi.org/10.1007/978-3-319-00873-8_1

  196. Barbosa LCM, Gomes G, Junior ACA (2019) Prediction of temperature-frequency-dependent mechanical properties of composites based on thermoplastic liquid resin reinforced with carbon fibers using artificial neural networks. Int J Adv Manuf Technol 105:2543–2556. https://doi.org/10.1007/s00170-019-04486-4

    Article  Google Scholar 

  197. Adesina OT, Jamiru T, Daniyan IA et al (2020) Mechanical property prediction of SPS processed GNP/PLA polymer nanocomposite using artificial neural network. Cogent Eng. https://doi.org/10.1080/23311916.2020.1720894

    Article  Google Scholar 

  198. Altinkok N, Koker R (2004) Neural network approach to prediction of bending strength and hardening behaviour of particulate reinforced (Al-Si-Mg)-aluminium matrix composites. Mater Des 25:595–602. https://doi.org/10.1016/j.matdes.2004.02.014

    Article  Google Scholar 

  199. Ciupan E, Ciupan M, Corina Jucan D (2018) Determining the mechanical properties of a new composite material using artificial neural networks. Int J Eng Trends Technol 66:103–108. https://doi.org/10.14445/22315381/ijett-v66p218

    Article  Google Scholar 

  200. Nikoo M, Torabian Moghadam F, Sadowski Ł (2015) Prediction of concrete compressive strength by evolutionary artificial neural networks. Adv Mater Sci Eng. https://doi.org/10.1155/2015/849126

    Article  Google Scholar 

  201. Karthiyaini S, Senthamaraikannan K, Priyadarshini J et al (2019) Prediction of mechanical strength of fiber admixed concrete using multiple regression analysis and artificial neural network. Adv Mater Sci Eng. https://doi.org/10.1155/2019/4654070

    Article  Google Scholar 

  202. Jumaa GB, Yousif AR (2018) Predicting shear capacity of FRP-reinforced concrete beams without stirrups by artificial neural networks, gene expression programming, and regression analysis. Adv Civ Eng. https://doi.org/10.1155/2018/5157824

    Article  Google Scholar 

  203. Alaneme George U, Mbadike Elvis M (2019) Modelling of the mechanical properties of concrete with cement ratio partially replaced by aluminium waste and sawdust ash using artificial neural network. SN Appl Sci. https://doi.org/10.1007/s42452-019-1504-2

    Article  Google Scholar 

  204. Hodhod OA, Khalafalla MS, Osman MSM (2019) ANN models for nano silica/ silica fume concrete strength prediction. Water Sci 33:118–127. https://doi.org/10.1080/11104929.2019.1669005

    Article  Google Scholar 

  205. Nwobi-Okoye CC, Ochieze BQ (2018) Age hardening process modeling and optimization of aluminum alloy A356/Cow horn particulate composite for brake drum application using RSM, ANN and simulated annealing. Def Technol 14:336–345. https://doi.org/10.1016/j.dt.2018.04.001

    Article  Google Scholar 

  206. Naser MZ, Uppala VA (2020) Properties and material models for construction materials post exposure to elevated temperatures. Mech Mater 142:103293. https://doi.org/10.1016/j.mechmat.2019.103293

    Article  Google Scholar 

  207. Tanyildizi H (2018) Prediction of the strength properties of carbon fiber-reinforced lightweight concrete exposed to the high temperature using artificial neural network and support vector machine. Adv Civ Eng. https://doi.org/10.1155/2018/5140610

    Article  Google Scholar 

  208. Naser MZ (2019) Properties and material models for modern construction materials at elevated temperatures. Comput Mater Sci 160:16–29. https://doi.org/10.1016/j.commatsci.2018.12.055

    Article  Google Scholar 

  209. Sammons D, Winfree WP, Burke E, Ji S (2016) Segmenting delaminations in carbon fiber reinforced polymer composite CT using convolutional neural networks. In: AIP conference proceedings 1706 Doi: https://doi.org/10.1063/1.4940585

  210. Zamyad H, Naghavi N, Godaz R, Monsefi R (2020) A recurrent neural network–based model for predicting bending behavior of ionic polymer–metal composite actuators. J Intell Mater Syst Struct 31:1973–1985. https://doi.org/10.1177/1045389X20942318

    Article  Google Scholar 

  211. Kushvaha V, Kumar SA, Madhushri P, Sharma A (2020) Artificial neural network technique to predict dynamic fracture of particulate composite. J Compos Mater 54:3099–3108. https://doi.org/10.1177/0021998320911418

    Article  Google Scholar 

  212. Abueidda DW, Almasri M, Ammourah R et al (2019) Prediction and optimization of mechanical properties of composites using convolutional neural networks. Compos Struct 227:111264. https://doi.org/10.1016/j.compstruct.2019.111264

    Article  Google Scholar 

  213. Al-Assadi M, Kadi HAE, Deiab IM (2011) Using artificial neural networks to predict the fatigue life of different composite materials including the stress ratio effect. Appl Compos Mater 18:297–309. https://doi.org/10.1007/s10443-010-9158-7

    Article  Google Scholar 

  214. Altabey WA, Noori M (2017) Fatigue life prediction for carbon fibre/epoxy laminate composites under spectrum loading using two different neural network architectures. Int J Sustain Mater Struct Syst 3:53. https://doi.org/10.1504/ijsmss.2017.10013394

    Article  Google Scholar 

  215. Deenadayalu CA, Chattopadhyay A, Chen HP (2004) Characterization and detection of delamination in composite laminates using artificial neural networks. In: Collect Tech Pap—10th AIAA/ISSMO multidisciplinary analysis and optimization conference 6: 3874–3903. Doi: https://doi.org/10.2514/6.2004-4649

  216. De Sena BBV, Freire RCS (2012) Criteria for the use of modular networks: fatigue in composite materials. J Compos Mater 46:2973–2985. https://doi.org/10.1177/0021998311434968

    Article  Google Scholar 

  217. da Cunha Diniz B, Freire Júnior RCS (2020) Study of the fatigue behavior of composites using modular ANN with the incorporation of a posteriori failure probability. Int J Fatigue 131:105357. https://doi.org/10.1016/j.ijfatigue.2019.105357

    Article  Google Scholar 

  218. El Kadi H, Al-Assaf Y (2002) Energy-based fatigue life prediction of fiberglass/epoxy composites using modular neural networks. Compos Struct 57:85–89. https://doi.org/10.1016/S0263-8223(02)00071-5

    Article  Google Scholar 

  219. Guler MO, Artir R (2007) Modular neural network modeling of compressive strength of high-alumina bricks by using tangent function. Mater Des 28:112–118. https://doi.org/10.1016/j.matdes.2005.05.013

    Article  Google Scholar 

  220. Khan A, Ko DK, Lim SC, Kim HS (2019) Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network. Compos Part B Eng 161:586–594. https://doi.org/10.1016/j.compositesb.2018.12.118

    Article  Google Scholar 

  221. Tabian I, Fu H, Khodaei ZS (2019) A convolutional neural network for impact detection and characterization of complex composite structures. Sensors (Switzerland) 19:1–25. https://doi.org/10.3390/s19224933

    Article  Google Scholar 

  222. Yang C, Kim Y, Ryu S, Gu GX (2020) Prediction of composite microstructure stress-strain curves using convolutional neural networks. Mater Des 189:108509. https://doi.org/10.1016/j.matdes.2020.108509

    Article  Google Scholar 

  223. Belísio AS, Freire Júnior RCS (2013) Comparative study between the PNL method and a MN in modelling fatigue of composite materials. Fatigue Fract Eng Mater Struct 36:392–400. https://doi.org/10.1111/ffe.12010

    Article  Google Scholar 

  224. Satish Kumar D, Rajmohan M (2019) Optimizing wear behavior of epoxy composites using response surface methodology and artificial neural networks. Polym Compos 40:2812–2818. https://doi.org/10.1002/pc.25089

    Article  Google Scholar 

  225. Ray S, Kumar Rout A, Kumar Sahoo A (2021) A comparative analysis of the abrasion wear characteristics of industrial wastes filled glass/polyester composites based on the design of experiment and neural network. Polym Compos 42:424–438. https://doi.org/10.1002/pc.25836

    Article  Google Scholar 

  226. Pati PR, Satapathy A (2017) A study on tribological behavior of linz-donawitz slag filled polypropylene composites using experimental design and neural networks. In: Proceedings of the ASME 2017 gas turbine india conference. 2: V002T10A001. ASME. Doi: https://doi.org/10.1115/GTINDIA2017-4514

  227. Velmurugan C, Subramanian R, Thirugnanam S, Anandavel B (2012) Experimental study and prediction using ANN on mass loss of hybrid composites. Ind Lubr Tribol 64:138–146. https://doi.org/10.1108/00368791211218669

    Article  Google Scholar 

  228. Agarwal M, Kumar Singh M, Srivastava R, Gautam RK (2021) Microstructural measurement and artificial neural network analysis for adhesion of tribolayer during sliding wear of powder-chip reinforcement based composites. Meas J Int Meas Confed 168:108417. https://doi.org/10.1016/j.measurement.2020.108417

    Article  Google Scholar 

  229. Argatov II, Chai YS (2019) An artificial neural network supported regression model for wear rate. Tribol Int 138:211–214. https://doi.org/10.1016/j.triboint.2019.05.040

    Article  Google Scholar 

  230. Chang L, Zhang Z, Ye L, Friedrich K (2008) Synergistic effects of nanoparticles and traditional tribofillers on sliding wear of polymeric hybrid composites. Tribol Interface Eng Ser 55:35–61. https://doi.org/10.1016/S1572-3364(08)55003-8

  231. Gangwar S, Pathak VK (2020) Dry sliding wear characteristics evaluation and prediction of vacuum casted marble dust (MD) reinforced ZA-27 alloy composites using hybrid improved bat algorithm and ANN. Mater Today Commun 25:101615. https://doi.org/10.1016/j.mtcomm.2020.101615

    Article  Google Scholar 

  232. Genel K, Kurnaz SC, Durman M (2003) Modeling of tribological properties of alumina fiber reinforced zinc-aluminum composites using artificial neural network. Mater Sci Eng A 363:203–210. https://doi.org/10.1016/S0921-5093(03)00623-3

    Article  Google Scholar 

  233. Gyurova LA, Miniño-Justel P, Schlarb AK (2010) Modeling the sliding wear and friction properties of polyphenylene sulfide composites using artificial neural networks. Wear 268:708–714. https://doi.org/10.1016/j.wear.2009.11.008

    Article  Google Scholar 

  234. Gyurova LA, Friedrich K (2011) Artificial neural networks for predicting sliding friction and wear properties of polyphenylene sulfide composites. Tribol Int 44:603–609. https://doi.org/10.1016/j.triboint.2010.12.011

    Article  Google Scholar 

  235. Hayajneh M, Hassan AM, Alrashdan A, Mayyas AT (2009) Prediction of tribological behavior of aluminum-copper based composite using artificial neural network. J Alloys Compd 470:584–588. https://doi.org/10.1016/j.jallcom.2008.03.035

    Article  Google Scholar 

  236. Jiang Z, Gyurova LA, Schlarb AK et al (2008) Study on friction and wear behavior of polyphenylene sulfide composites reinforced by short carbon fibers and sub-micro TiO2 particles. Compos Sci Technol 68:734–742. https://doi.org/10.1016/j.compscitech.2007.09.022

    Article  Google Scholar 

  237. Kavimani V, Prakash KS (2017) Tribological behaviour predictions of r-GO reinforced Mg composite using ANN coupled Taguchi approach. J Phys Chem Solids 110:409–419. https://doi.org/10.1016/j.jpcs.2017.06.028

    Article  Google Scholar 

  238. Kavimani V, Soorya Prakash K, Thankachan T (2017) Surface characterization and specific wear rate prediction of r-GO/AZ31 composite under dry sliding wear condition. Surf Interfaces 6:143–153. https://doi.org/10.1016/j.surfin.2017.01.004

    Article  Google Scholar 

  239. Kavimani V, Prakash KS, Thankachan T (2019) Experimental investigations on wear and friction behaviour of SiC@r-GO reinforced Mg matrix composites produced through solvent-based powder metallurgy. Compos Part B Eng 162:508–521. https://doi.org/10.1016/j.compositesb.2019.01.009

    Article  Google Scholar 

  240. Kranthi G, Satapathy A (2010) Evaluation and prediction of wear response of pine wood dust filled epoxy composites using neural computation. Comput Mater Sci 49:609–614. https://doi.org/10.1016/j.commatsci.2010.06.001

    Article  Google Scholar 

  241. Leema N, Radha P, Vettivel SC, Khanna Nehemiah H (2015) Characterization, pore size measurement and wear model of a sintered Cu-W nano composite using radial basis functional neural network. Mater Des 68:195–206. https://doi.org/10.1016/j.matdes.2014.11.035

    Article  Google Scholar 

  242. Mahapatra SS, Patnaik A (2009) Study on mechanical and erosion wear behavior of hybrid composites using Taguchi experimental design. Mater Des 30:2791–2801. https://doi.org/10.1016/j.matdes.2009.01.037

    Article  Google Scholar 

  243. Malazdrewicz S, Sadowski Ł (2021) An intelligent model for the prediction of the depth of the wear of cementitious composite modified with high-calcium fly ash. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.113234

    Article  Google Scholar 

  244. Mehra D, Sujith SV, Mahapatra MM, Harsha SP (2018) Modeling of wear process parameters of in-situ RZ5-10wt%TiC composite using artificial neural network. Mater Today Proc 5:24124–24132. https://doi.org/10.1016/j.matpr.2018.10.206

    Article  Google Scholar 

  245. Özyürek D, Kalyon A, Yildirim M et al (2014) Experimental investigation and prediction of wear properties of Al/SiC metal matrix composites produced by thixomoulding method using Artificial Neural Networks. Mater Des 63:270–277. https://doi.org/10.1016/j.matdes.2014.06.005

    Article  Google Scholar 

  246. Parikh HH, Gohil PP (2019) Experimental determination of tribo behavior of fiber-reinforced composites and its prediction with artificial neural networks. In: Woodhead publishing series in composites science and engineering, durability and life prediction in biocomposites, fibre-reinforced composites and hybrid Composites pp. 301-320. Doi: https://doi.org/10.1016/B978-0-08-102290-0.00013-1

  247. Prakash KS, Thankachan T, Radhakrishnan R (2017) Parametric optimization of dry sliding wear loss of copper–MWCNT composites. Trans Nonferr Met Soc China 27:627–637. https://doi.org/10.1016/S1003-6326(17)60070-0

    Article  Google Scholar 

  248. Pramod R, Veeresh Kumar GB, Gouda PSS, Mathew AT (2018) A Study on the Al2O3 reinforced Al7075 metal matrix composites wear behavior using artificial neural networks. Mater Today Proc 5:11376–11385. https://doi.org/10.1016/j.matpr.2018.02.105

    Article  Google Scholar 

  249. Rashed FS, Mahmoud TS (2009) Prediction of wear behaviour of A356/SiCp MMCs using neural networks. Tribol Int 42:642–648. https://doi.org/10.1016/j.triboint.2008.08.010

    Article  Google Scholar 

  250. Ritapure PP, Kharde YR (2019) SiC contents and pin temperature effect on tribological properties of Al25Zn/SiC composites. Int J Refract Met Hard Mater 82:234–244. https://doi.org/10.1016/j.ijrmhm.2019.04.013

    Article  Google Scholar 

  251. Rout A, Satapathy A (2012) Analysis of dry sliding wear behaviour of rice husk filled epoxy composites using design of experiment and ANN. Proced Eng 38:1218–1232. https://doi.org/10.1016/j.proeng.2012.06.153

    Article  Google Scholar 

  252. Satyanarayana G, Swami Naidu G, Babu NH (2018) Artificial neural network and regression modelling to study the effect of reinforcement and deformation on volumetric wear of red mud nano particle reinforced aluminium matrix composites synthesized by stir casting. Bol la Soc Esp Ceram y Vidr 57:91–100. https://doi.org/10.1016/j.bsecv.2017.09.006

    Article  Google Scholar 

  253. Shabani MO, Mazahery A (2011) Prediction of wear properties in A356 matrix composite reinforced with B4C particulates. Synth Met 161:1226–1231. https://doi.org/10.1016/j.synthmet.2011.04.009

    Article  Google Scholar 

  254. Veeresh Kumar GB, Pramod R, Rao CSP, Gouda PSS (2018) Artificial Neural Network Prediction on Wear of Al6061 Alloy Metal Matrix Composites Reinforced With-Al2o3. Mater Today Proc 5:11268–11276. https://doi.org/10.1016/j.matpr.2018.02.093

    Article  Google Scholar 

  255. Vettivel SC, Selvakumar N, Leema N (2013) Experimental and prediction of sintered Cu-W composite by using artificial neural networks. Mater Des 45:323–335. https://doi.org/10.1016/j.matdes.2012.08.056

    Article  Google Scholar 

  256. Younesi M, Bahrololoom ME, Ahmadzadeh M (2010) Prediction of wear behaviors of nickel free stainless steel-hydroxyapatite bio-composites using artificial neural network. Comput Mater Sci 47:645–654. https://doi.org/10.1016/j.commatsci.2009.09.019

    Article  Google Scholar 

  257. Zakaulla M, Parveen F et al (2019) Artificial neural network based prediction on tribological properties of polycarbonate composites reinforced with graphene and boron carbide particle. Mater Today Proc 26:296–304. https://doi.org/10.1016/j.matpr.2019.11.276

    Article  Google Scholar 

  258. Zhang Z, Friedrich K, Velten K (2002) Prediction on tribological properties of short fibre composites using artificial neural networks. Wear 252:668–675. https://doi.org/10.1016/S0043-1648(02)00023-6

    Article  Google Scholar 

  259. Zhu J, Shi Y, Feng X et al (2009) Prediction on tribological properties of carbon fiber and TiO2 synergistic reinforced polytetrafluoroethylene composites with artificial neural networks. Mater Des 30:1042–1049. https://doi.org/10.1016/j.matdes.2008.06.045

    Article  Google Scholar 

  260. Dinaharan I, Palanivel R, Murugan N, Laubscher RF (2020) Predicting the wear rate of AA6082 aluminum surface composites produced by friction stir processing via artificial neural network. Multidiscip Model Mater Struct 16:409–423. https://doi.org/10.1108/MMMS-05-2019-0102

    Article  Google Scholar 

  261. Stojanovic B, Blagojevic J, Babic M et al (2017) Optimization of hybrid aluminum composites wear using Taguchi method and artificial neural network. Ind Lubr Tribol 69:1005–1015. https://doi.org/10.1108/ILT-02-2017-0043

    Article  Google Scholar 

  262. Sreebalaji VS, Ravi Kumar K (2016) Artificial neural networks and multi response optimisation on EDM of aluminium (A380)/fly ash composites. Int J Comput Mater Sci Surf Eng 6:244–262. https://doi.org/10.1504/IJCMSSE.2016.081690

    Article  Google Scholar 

  263. Xu L, Paulo Davim J (2008) Modelling cutting power and tool wear in turning of aluminium matrix composites using artificial neural networks. Int J Mater Prod Technol 32:333–342. https://doi.org/10.1504/IJMPT.2008.018990

    Article  Google Scholar 

  264. Dixit A, Roy S, Kumar K (2016) Strategic process optimisation for tribological behaviour of silica gel reinforced aluminium composite material by neuro-grey modelling. Int J Process Manag Benchmarking 6:544–560. https://doi.org/10.1504/IJPMB.2016.10000283

    Article  Google Scholar 

  265. Sivananth V, Karuppusamy P, Lingadurai K (2019) Wear and corrosion behaviour of titanium carbide reinforced metal matrix composites for automobile brake disc application. Int J Mater Eng Innov 10:246–267. https://doi.org/10.1504/IJMATEI.2019.101970

    Article  Google Scholar 

  266. Mutuk T, Gürbüz M, Mutuk H (2020) Prediction of wear properties of graphene-Si3N4reinforced titanium hybrid composites by artificial neural network. Mater Res Express. https://doi.org/10.1088/2053-1591/abaac8

    Article  Google Scholar 

  267. Siddhartha SAK (2015) Mechanical and dry sliding wear characterization of short glass fiber reinforced polyester-based homogeneous and their functionally graded composite materials. Proc Inst Mech Eng Part L J Mater Des Appl 229:274–298. https://doi.org/10.1177/1464420713511429

    Article  Google Scholar 

  268. Ekka KK, Chauhan SR, Varun (2016) Study on the sliding wear behaviour of hybrid aluminium matrix composites using Taguchi design and neural network. Proc Inst Mech Eng Part L J Mater Des Appl 230:537–549. https://doi.org/10.1177/1464420715581393

    Article  Google Scholar 

  269. Mahmoud TS (2012) Artificial neural network prediction of the wear rate of powder metallurgy Al/Al 2O 3 metal matrix composites. Proc Inst Mech Eng Part L J Mater Des Appl 226:3–15. https://doi.org/10.1177/1464420711426531

    Article  Google Scholar 

  270. Nasir T, Yousif BF, McWilliam S et al (2010) An artificial neural network for prediction of the friction coefficient of multi-layer polymeric composites in three different orientations. Proc Inst Mech Eng Part C J Mech Eng Sci 224:419–429. https://doi.org/10.1243/09544062JMES1677

    Article  Google Scholar 

  271. Sardar S, Dey S, Das D (2021) Modelling of tribological responses of composites using integrated ANN-GA technique. J Compos Mater 55:873–896. https://doi.org/10.1177/0021998320960520

    Article  Google Scholar 

  272. Suresh A, Harsha AP, Ghosh MK (2010) Erosion studies of short glass fiber-reinforced thermoplastic composites and prediction of erosion rate using ANNs. J Reinf Plast Compos 29:1641–1652. https://doi.org/10.1177/0731684409338632

    Article  Google Scholar 

  273. Nagaraj A, Gopalakrishnan S (2021) A study on mechanical and tribological properties of aluminium 1100 alloys 6% of RHAp, BAp, CSAp, ZnOp and egg shellp composites by ANN. SILICON 13:3367–3376. https://doi.org/10.1007/s12633-020-00731-8

    Article  Google Scholar 

  274. Canakci A, Ozsahin S, Varol T (2014) Prediction of effect of reinforcement size and volume fraction on the abrasive wear behavior of AA2014/B4Cp MMCs using artificial neural network. Arab J Sci Eng 39:6351–6361. https://doi.org/10.1007/s13369-014-1157-9

    Article  Google Scholar 

  275. Parikh HH, Gohil PP (2017) Experimental investigation and prediction of wear behavior of cotton fiber polyester composites. Friction 5:183–193. https://doi.org/10.1007/s40544-017-0145-y

    Article  Google Scholar 

  276. Egala R, Jagadeesh GV, Setti SG (2021) Experimental investigation and prediction of tribological behavior of unidirectional short castor oil fiber reinforced epoxy composites. Friction 9:250–272. https://doi.org/10.1007/s40544-019-0332-0

    Article  Google Scholar 

  277. Saravanan SD, Senthilkumar M (2015) Prediction of tribological behaviour of rice husk ash reinforced aluminum alloy matrix composites using artificial neural network. Russ J Non-Ferr Met 56:97–106. https://doi.org/10.3103/S1067821215010174

    Article  Google Scholar 

  278. Stojanović B, Vencl A, Bobić I et al (2018) Experimental optimisation of the tribological behaviour of Al/SiC/Gr hybrid composites based on Taguchi’s method and artificial neural network. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-018-1237-y

    Article  Google Scholar 

  279. Aherwar A, Singh A, Patnaik A (2017) Prediction of effect of tungsten filled Co-30Cr-4Mo-1Ni metal matrix biomedical composite alloy on sliding wear peculiarity using Taguchi methodology and ANN. Adv Mater Process Technol 3:665–688. https://doi.org/10.1080/2374068X.2017.1366104

    Article  Google Scholar 

  280. Dinaharan I, Palanivel R, Murugan N, Laubscher RF (2020) Application of artificial neural network in predicting the wear rate of copper surface composites produced using friction stir processing. Aust J Mech Eng 00:1–12. https://doi.org/10.1080/14484846.2020.1769803

    Article  Google Scholar 

  281. Padhi PK, Satapathy A (2013) Analysis of sliding wear characteristics of BFS filled composites using an experimental design approach integrated with ANN. Tribol Trans 56:789–796. https://doi.org/10.1080/10402004.2013.798448

    Article  Google Scholar 

  282. Ravi Kumar K, Mohanasundaram KM, Arumaikkannu G, Subramanian R (2012) Artificial neural networks based prediction of wear and frictional behaviour of aluminium (A380)-fly ash composites. Tribol—Mater Surf Interfaces 6:15–19. https://doi.org/10.1179/1751584X11Y.0000000025

    Article  Google Scholar 

  283. Senthil Kumar P, Manisekar K, Narayanasamy R (2014) Experimental and prediction of abrasive wear behavior of sintered Cu-SiC composites containing graphite by using artificial neural networks. Tribol Trans 57:455–471. https://doi.org/10.1080/10402004.2014.880979

    Article  Google Scholar 

  284. Kurt HI, Oduncuoglu M (2015) Application of a neural network model for prediction of wear properties of ultrahigh molecular weight polyethylene composites. Int J Polym Sci. https://doi.org/10.1155/2015/315710

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the reviewers and the Editor for their valuable review comments, which significantly enhanced the quality of the paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Maheshwera Reddy Paturi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paturi, U.M.R., Cheruku, S. & Reddy, N.S. The Role of Artificial Neural Networks in Prediction of Mechanical and Tribological Properties of Composites—A Comprehensive Review. Arch Computat Methods Eng 29, 3109–3149 (2022). https://doi.org/10.1007/s11831-021-09691-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09691-7

Navigation