Skip to main content

Advertisement

Log in

Multi-level Hybridized Optimization Methods Coupling Local Search Deterministic and Global Search Evolutionary Algorithms

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Efficient optimization methods coupling a stochastic evolutionary algorithm with a gradient based deterministic method are presented in this paper. Two kinds of hybridization are compared: one is a stochastic/deterministic alternate algorithm, the other is a stochastic/deterministic embedded algorithm. In the alternating algorithm, stochastic and deterministic optimizers are performed alternately as follows: some individuals are selected from the previous population, and sent to the deterministic algorithms for further optimization, then the improved individuals are inserted into the above population to form a new one for the stochastic algorithm. In the embedded hybridized algorithm, stochastic and deterministic optimization software are run in parallel and independently, the coupling between them is that the deterministic optimizer operates on a randomly selected individual (or the best individual) from the non evaluated population of the stochastic algorithm, then its outcome (new individual) is re-injected into the evaluated population. Moreover, a multilevel approximation (e.g. variable fidelity modeling, analysis and hierarchical approximated parameterization) is introduced in the algorithm, via a low fidelity modeling and rough parameterization to perform a search on large population at lower level, and a high fidelity modeling with detailed parameterization used at higher level. After a theoretical validation of the methods on mathematical test cases, the hybridized methods are successfully applied to the aerodynamic shape optimization of a fore-body of an hypersonic air breathing vehicle, providing both a significant acceleration in terms of parallel HPC performance and improved quality of the design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Davidon WC (1959) Variable metric method for minimization. Argonne National Laboratory Research and Development, Report 5990

  2. Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comput J 3:175–184

    Article  MathSciNet  Google Scholar 

  3. Spendley W, Hext GR, Himsworth FR (1962) Sequential application of simplex designs in optimisation and evolutionary operation. Technometrics 4:441–461

    Article  MathSciNet  Google Scholar 

  4. Powell MJD (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J 7:155–162

    Article  MathSciNet  Google Scholar 

  5. Colaco MJ, Dulikravich GS (2009) A survey of basic deterministic, heuristic and hybrid methods for single objective optimization and response surface generation. METTI IV C Thermal Measurements and Inverse Techniques, Rio de Janeiro, Brazil, November 8–13

  6. Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

    Book  Google Scholar 

  7. Jameson A (1988) Aerodynamic design via control theory. J Sci Comput 3(3):233–260

    Article  Google Scholar 

  8. Holland J (1975) Adaptation in natural and artificial systems. The University of Michigan, Michigan

    Google Scholar 

  9. Beasley D, Bull DR, Martin R (1993) An overview of genetic algorithms: part 1, fundamentals. Univ Comput 15:58–69

    Google Scholar 

  10. Chan YY (1998) Applications of genetic algorithms to aerodynamic design. Can Aeronaut Space J 44(3):182–187

    MathSciNet  Google Scholar 

  11. Obayashi S, Takeguchi Y (1999) Mulitipoint aerodynamic design of supersonic wing planform using MOGA. In: Proceedings of the 7th annual conference of the computational fluid dynamics society of Canada, Halifax, pp 23–28, May 30–June 1

  12. Rogalsky T, Derksen RW, Kocabiyic S (1999) An aerodynamic design technique for optimizing fan blade spacing. In: Proceedings of the 7th annual conference of the computational fluid dynamics society of Canada, Halifax, pp 29–34, May 30–June 1

  13. Price K, Storn R (1997) Differential evolution. Dr. Dobb’s J 22(4):18–24

    MATH  Google Scholar 

  14. Price K, Storn R, Lampinen J (2005) Differential evolution—a practical approach to global optimization. Springer, Berlin

    MATH  Google Scholar 

  15. Rogalsky T, Derksen RW, Kocabiyic S (1999) Differential evolution in aerodynamic optimization. In: Proceedings of the 46th annual conference of the Canadian aeronautics and space institute, Montreal, May 2–5 pp 29–36

  16. Goldberg DE, Voessner S (1999) Optimizing global-local search hybrids. In: The genetic and evolutionary computation conference (GECCO 1999). Morgan Kaufmann, Orlando, USA, pp 222–228

  17. Vicini A, Quagliarella D (1999) Airfoil and wing design through hybrid optimization strategies. AIAA J 37(5):634–641

    Article  Google Scholar 

  18. Poloni C (1995) Hybrid GA for multi objective aerodynamic shape optimization. In: Genetic algorithms in engineering and computer science. Wiley, New York

  19. Chiou J, Wang FS (1998) A hybrid method of differential evolution with application to optimal control problems of a bioprocess system. In: IEEE international conference on evolutionary computation proceeding, 1998, New York, NY, pp 627–632

  20. Masters T, Land W (1997) A new training algorithm for the general regression neural network. In: IEEE international conference on systems, man, and cybernetics, computational cybernetics and simulation, 1997, vol 3, pp 1990–1994

  21. Kampolis IC, Giannakoglou KC (2008) A multilevel approach to single- and multiobjective aerodynamic optimization. Comput Methods Appl Mech Eng 197:2963–2975

    Article  Google Scholar 

  22. El-Mihoub TA, Hopgood AA, Nolle L, Battersby A (2006) Hybrid genetic algorithms: a review. Eng Lett 13(2):1–14

    Google Scholar 

  23. Muyl F, Dumas L, Herbert V (2004) Hybrid method for aerodynamic shape optimization in automotive industry. Comput Fluids 33:849–858

    Article  Google Scholar 

  24. Yiu K, Liu Y, Teo K (2004) A hybrid descent method for global optimization. J Glob Optim 28(2):229–238

    Article  MathSciNet  Google Scholar 

  25. Lee Y, Lee M (2002) Shape-based block layout approach to facility layout problems using hybrid genetic algorithm. Comput Ind Eng 42(2):237–248

    Article  Google Scholar 

  26. Giannakoglou K, Pappou T, Giotis A, Koubogiannis D (2000) A parallel inverse-design algorithm in aeronautics based on genetic algorithms and the adjoint method. In: ECCOMAS 2000, Barcelona, September

  27. Poloni C, Giurgevich A, Onesti L, Pediroda V (2000) Hybridization of a multiobjective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics. Comput Methods Appl Mech Eng 186(2):403–420

    Article  Google Scholar 

  28. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evolut Comput 7(2):204–223

    Article  Google Scholar 

  29. Lee D, Gonzalez LF, Périaux J, Srinivas K, Oñate E (2011) Hybrid-game strategies for multi-objective design optimization in engineering. Comput Fluids 47:189–204

    Article  MathSciNet  Google Scholar 

  30. Chaparro BM, Thuillier S, Menezes LF, Manach PY, Fernandes JV (2008) Material parameters identification: gradient-based, genetic and hybrid optimization algorithms. Comput Mater Sci 44:339–346

    Article  Google Scholar 

  31. Giannakoglou KC, Papadimitriou DI, Kampolis IC (2006) Aerodynamic shape design using evolutionary algorithms and new gradient-assisted metamodels. Comput Methods Appl Mech Eng 195:6312–6329

    Article  Google Scholar 

  32. Kampolis IC, Giannakoglou KC (2011) Synergetic use of different evaluation, parameterization and search tools within a multilevel optimization platform. Appl Soft Comput 11:645–651

    Article  Google Scholar 

  33. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evolut Comput 15(1):4–31

    Article  Google Scholar 

  34. Wardi Y (1988) Stochastic algorithms with Armijo stepsizes for minimization of function. J Optim Theory Optim 59(2):307–323

    Article  MathSciNet  Google Scholar 

  35. Kampolis IC, Trompoukis XS, Asouti VG, Giannakoglou KC (2010) CFD-based analysis and two-level aerodynamic optimization on graphics processing units. Comput Methods Appl Mech Eng 199:712–722

    Article  MathSciNet  Google Scholar 

  36. Asouti VG, Giannakoglou KC (2009) Aerodynamic optimization using a parallel asynchronous evolutionary algorithm controlled by strongly interacting demes. Eng Optim 41(3):241–257

    Article  MathSciNet  Google Scholar 

  37. Kampolis IC, Giannakoglou KC (2009) Distributed evolutionary algorithms with hierarchical evaluation. Eng Optim 41(11):1037–1049

    Article  Google Scholar 

  38. Désidéri J, Janka A (2003) Hierarchical parameterization for multilevel evolutionary shape optimization with application to aerodynamics. In: Bugeda G, Desideri J, Periaux J, Schoenauer M, Winter G (eds) International congress on evolutionary methods for design, optimization and control with applications to industrial problems—EUROGEN 2003

  39. Darwin C (1859) On the origin of species. John Murray, Albemarle Street, London

    Google Scholar 

  40. Mühlenbein H, Schomisch M, Born J (1991) The parallel genetic algorithm as function optimizer. Parall Comput 17(6–7):619–632

    Article  Google Scholar 

  41. Land M (1998) Evolutionary algorithms with local search for combinatorial optimization. Doctoral dissertation, University of California, San Diego

  42. Tang ZL, Zhang LH (2016) Nash equilibrium and multi-criterion aerodynamic optimization. J Comput Phys 314:107 C126

    Article  MathSciNet  Google Scholar 

  43. Tang Z, Désidéri JA, Périaux J (2007) Multi-criteria aerodynamic shape-design optimization and inverse problems using control theory and Nash games. J Optim Theory Appl 135:599–622

    Article  MathSciNet  Google Scholar 

  44. Tang Z, Chen Y, Zhang L (2017) Natural laminar flow shape optimization in transonic regime with competitive Nash game strategy. Appl Math Model 48:534–547

    Article  MathSciNet  Google Scholar 

  45. Tang Z, Zhang L (2019) A new Nash optimization method based on alternate elitist information exchange for multi-objective aerodynamic shape design. Appl Math Model 68:244–266

    Article  MathSciNet  Google Scholar 

  46. Lee DS, Gonzalez LF, Périaux J, Srinivas K (2011) Efficient hybrid-game strategies coupled to evolutionary algorithms for robust multidisciplinary design optimization in aerospace engineering. IEEE Trans Evolut Comput 15(2):133–150

    Article  Google Scholar 

  47. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 6(2):182–197

    Article  Google Scholar 

  48. Désidéri JA (2009) Multiple-Gradient Descent Algorithm (MGDA). INRIA Research Report RR-6953 http://hal.inria.fr/inria-00389811

  49. Désidéri JA (2012) Multiple-gradient descent algorithm (MGDA) for multiobjective optimization. Comptes rendus—Mathématique 350(5–6):313–C318

    Article  MathSciNet  Google Scholar 

  50. Zerbinati A, Désidéri JA, Duvigneau R (2011) Comparison between MGDA and PAES for Multi-objective optimization. INRIA Research Report RR-7667. http://hal.inria.fr/inria-00605423

  51. Désidéri JA (2012) MGDA II: A direct method for calculating a descent direction common to several criteria. INRIA Research Report RR-7422. http://hal.inria.fr/hal-00685762

Download references

Funding

This study was funded by National natural Science Foundation of China (Grant Number NSFC-11772154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Hu, X. & Périaux, J. Multi-level Hybridized Optimization Methods Coupling Local Search Deterministic and Global Search Evolutionary Algorithms. Arch Computat Methods Eng 27, 939–975 (2020). https://doi.org/10.1007/s11831-019-09336-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09336-w

Navigation