Skip to main content
Log in

Computational Mechanisms of Pulse-Coupled Neural Networks: A Comprehensive Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Pulse-coupled neural networks (PCNN) have an inherent ability to process the signals associated with the digital visual images because it is inspired from the neuronal activity in the primary visual area, V1, of the neocortex. This paper provides insight into the internal operations and behaviors of PCNN, and reveals the way how PCNN achieves good performance in digital image processing. The various properties of PCNN are categorized into a novel three-dimensional taxonomy for image processing mechanisms. The first dimension specifies the time matrix of PCNN, the second dimension captures the firing rate of PCNN, and the third dimension is the synchronization of PCNN. Many examples of processing mechanisms are provided to make it clear and concise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol Cybern 60(2):121–130

    Article  Google Scholar 

  2. Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213):334–337

    Article  Google Scholar 

  3. Fries P, Nikolić D, Singer W (2007) The gamma cycle. Trends Neurosci 30(7):309–316

    Article  Google Scholar 

  4. Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224

    Article  Google Scholar 

  5. Buzsáki G, Wang X-J (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    Article  Google Scholar 

  6. Nikolić D, Fries P, Singer W (2013) Gamma oscillations: precise temporal coordination without a metronome. Trends Cogn Sci 17(2):54–55

    Article  Google Scholar 

  7. Brunet N, Vinck M, Bosman CA, Singer W, Fries P (2014) Gamma or no gamma, that is the question. Trends Cogn Sci 18(10):507–509

    Article  Google Scholar 

  8. Brunet NM, Bosman CA, Vinck M, Roberts M, Oostenveld R, Desimone R, De Weerd P, Fries P (2014) Stimulus repetition modulates gamma-band synchronization in primate visual cortex. Proc Natl Acad Sci 111(9):3626–3631

    Article  Google Scholar 

  9. Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Comput 2(3):293–307

    Article  Google Scholar 

  10. Reitboeck HJ, Stoecker M, Hahn C (1993) Object separation in dynamic neural networks. IEEE Proc ICNN 2:638–641

    Google Scholar 

  11. Stoecker M, Reitboeck HJ, Eckhorn R (1996) A neural network for scene segmentation by temporal coding. Neurocomputing 11(2–4):123–134

    Article  MATH  Google Scholar 

  12. Stoecker M, Eckhorn R, Reitboeck HJ (1997) Size and position invariant visual representation supports retinotopic maps via selective backward paths: A dynamic second order neural network model for a possible functional role of recurrent connections in the visual cortex. Neurocomputing 17(2):111–132

    Article  Google Scholar 

  13. Milner PM (1974) A model for visual shape recognition. Psychol Rev 81(6):521–535

    Article  Google Scholar 

  14. von der Malsburg C (1994) The correlation theory of brain function. Springer, Berlin

    Google Scholar 

  15. Gray CM (1999) The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron 24(1):31–47

    Article  Google Scholar 

  16. Roskies AL (1999) The binding problem. Neuron 24(1):7–9

    Article  Google Scholar 

  17. Müller HJ, Elliott MA, Herrmann CS, Mecklinger A (2001) Neural binding of space and time: an introduction. Vis Cogn 8(3–5):273–285

    Article  Google Scholar 

  18. Johnson JL (1993) Waves in pulse-coupled neural networks. Proc World Congr Neural Netw 4:299–302

    Google Scholar 

  19. Johnson JL, Ritter D (1993) Observation of periodic waves in a pulse-coupled neural network. Opt Lett 18(15):1253–1255

    Article  Google Scholar 

  20. Johnson JL (1994) Pulse-coupled neural networks. Proc Adapt Comput Math Electron Opt CR55:47–76

    Google Scholar 

  21. Johnson JL (1994) Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images. Appl Opt 33(26):6239–6253

    Article  Google Scholar 

  22. Johnson JL (1994) Time signatures of images. IEEE Proc ICNN 2:1279–1284

    Google Scholar 

  23. Kinser JM, Johnson JL (1996) Object isolation. Opt Mem Neural Netw 5:137–146

    Google Scholar 

  24. Kinser JM, Johnson JL (1996) Stabilized input with a feedback pulse-coupled neural network. Opt Eng 35(8):2158–2161

    Article  Google Scholar 

  25. Kinser JM (1996) Simplified pulse-coupled neural network. Proc SPIE 2760:563–567

    Article  Google Scholar 

  26. Lindblad T, Becanovic V, Lindsey CS, Szekely G (1997) Intelligent detectors modelled from the cat’s eye. Nuclear Instrum Methods Phys Res A 389(1):245–250

    Article  Google Scholar 

  27. Johnson JL, Padgett ML (1999) PCNN models and applications. IEEE Trans Neural Netw 10(3):480–498

    Article  Google Scholar 

  28. Ma Y, Li L, Zhan K, Wang Z (2008) Pulse coupled neural network and digital image processing. Science Press, Beijing

    Google Scholar 

  29. Ma Y, Zhan K, Wang Z (2011) Applications of pulse-coupled neural networks. Springer, Berlin

    Book  MATH  Google Scholar 

  30. Lindblad T, Kinser JM (2013) Image processing using pulse-coupled neural networks: applications in python. Springer, Berlin

    Book  MATH  Google Scholar 

  31. Subashini MM, Sahoo SK (2014) Pulse coupled neural networks and its applications. Expert Syst Appl 41(8):3965–3974

    Article  Google Scholar 

  32. Johnson JL, Padgett ML, Omidvar O (1999) Guest editorial overview of pulse coupled neural network (PCNN) special issue. IEEE Trans Neural Netw 10(3):461–463

    Article  Google Scholar 

  33. Wang D, Freeman WJ, Kozma R, Lozowski A, Minai A (2004) Guest editorial special issue on temporal coding for neural information processing. IEEE Trans Neural Netw 15(5):953–956

    Article  Google Scholar 

  34. Ranganath HS, Kuntimad G, Johnson JL (1995) Pulse coupled neural networks for image processing. In: IEEE proceedings of Southeastcon’95 visualize the future, pp 37–43.

  35. Kuntimad G, Ranganath HS (1999) Perfect image segmentation using pulse coupled neural networks. IEEE Trans Neural Netw 10(3):591–598

    Article  Google Scholar 

  36. Stewart RD, Fermin I, Opper M (2002) Region growing with pulse-coupled neural networks: an alternative to seeded region growing. IEEE Trans Neural Netw 13(6):1557–1562

    Article  Google Scholar 

  37. Ma Y, Dai R, Li L (2002) Automated image segmentation using pulse coupled neural networks and image’s entropy. J China Inst Commun 23(1):46–51

    Google Scholar 

  38. Berg H, Olsson R, Lindblad T, Chilo J (2008) Automatic design of pulse coupled neurons for image segmentation. Neurocomputing 71(2008):1980–1993

    Article  Google Scholar 

  39. Lu Y, Miao J, Duan L, Qiao Y, Jia R (2008) A new approach to image segmentation based on simplified region growing PCNN. Appl Math Comput 205(2):807–814

    MATH  Google Scholar 

  40. Shi M, Jiang S, Wang H, Xu B (2009) A simplified pulse-coupled neural network for adaptive segmentation of fabric defects. Mach Vis Appl 20(2):131–138

    Article  Google Scholar 

  41. Wei S, Qu H, Hou M (2011) Automatic image segmentation based on PCNN with adaptive threshold time constant. Neurocomputing 74(2011):1485–1491

    Article  Google Scholar 

  42. Chen Y, Park S-K, Ma Y, Ala R (2011) A new automatic parameter setting method of a simplified PCNN for image segmentation. IEEE Trans Neural Netw 22(6):880–892

    Article  Google Scholar 

  43. Ranganath HS, Bhatnagar A (2011) Image segmentation using two-layer pulse coupled neural network with inhibitory linking field. GSTF J Comput 1(2):29–34

    Article  Google Scholar 

  44. Zhao R, Ma Y (2012) A region segmentation method for region-oriented image compression. Neurocomputing 85:45–52

    Article  Google Scholar 

  45. Gao C, Zhou D, Guo Y (2013) Automatic iterative algorithm for image segmentation using a modified pulse-coupled neural network. Neurocomputing 119(2013):332–338

    Article  Google Scholar 

  46. Gao C, Zhou D, Guo Y (2014) An iterative thresholding segmentation model using a modified pulse coupled neural network. Neural Process Lett 39(1):81–95

    Article  Google Scholar 

  47. Zhou D, Gao C, Guo Y (2014) A coarse-to-fine strategy for iterative segmentation using simplified pulse-coupled neural network. Soft Comput 18(3):557–570

    Article  Google Scholar 

  48. Zhan K, Shi J, Li Q, Teng J, Wang M (2015) Image segmentation using fast linking SCM. In: IEEE proceedongs of IJCNN, pp 2093–2100

  49. Zhou D, Zhou H, Gao C, Guo Y (2015) Simplified parameters model of PCNN and its application to image segmentation. Pattern Anal Appl. doi:10.1007/s10044-015-0462-6

    Google Scholar 

  50. Helmy AK, El-Taweel GS (2016) Image segmentation scheme based on SOM–CNN in frequency domain. Appl Soft Comput 40:405–415

    Article  Google Scholar 

  51. Ali JMH, Hassanien AE (2006) PCNN for detection of masses in digital mammogram. Neural Netw World 16(2):129

    Google Scholar 

  52. Murugavel M, Sullivan JM (2009) Automatic cropping of MRI rat brain volumes using pulse coupled neural networks. Neuroimage 45(3):845–854

    Article  Google Scholar 

  53. Fu JC, Chen CC, Chai JW, Wong STC, Li IC (2010) Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging. Comput Med Imaging Graph 34(4):308–320

    Article  Google Scholar 

  54. Chou N, Wu J, Bai B, Qiu A, Chuang K-H (2011) Robust automatic rodent brain extraction using 3-D pulse-coupled neural networks (PCNN). IEEE Trans Image Process 20(9):2554–2564

    Article  MathSciNet  Google Scholar 

  55. Hage IS, Hamade RF (2013) Segmentation of histology slides of cortical bone using pulse coupled neural networks optimized by particle-swarm optimization. Comput Med Imaging Graph 37(7):466–474

    Article  Google Scholar 

  56. Li J, Liu X, Zhuo J, Gullapalli RP, Zara JM (2013) An automatic rat brain extraction method based on a deformable surface model. J Neurosci Methods 218(1):72–82

    Article  Google Scholar 

  57. Imamoglu N, Gomez-Tames J, Gonzalez J, Gu D, Yu W (2014) Pulse-coupled neural network segmentation and bottom-up saliency-on feature extraction for thigh magnetic resonance imaging based 3D model construction. J Med Imaging Health Inform 4(2):220–229

    Article  Google Scholar 

  58. Harris MA, Van AN, Malik BH, Jabbour JM, Maitland KC (2015) A pulse coupled neural network segmentation algorithm for reflectance confocal images of epithelial tissue. PloS One 10(3):e0122368

    Article  Google Scholar 

  59. Guo Y, Dong M, Yang Z, Gao X, Wang K, Luo C, Ma Y, Zhang J (2016) A new method of detecting micro-calcification clusters in mammograms using contourlet transform and non-linking simplified PCNN. Comput Methods Programs Biomed 130:31–45

    Article  Google Scholar 

  60. Xie W, Li Y, Ma Y (2016) PCNN-based level set method of automatic mammographic image segmentation. Optik 127(4):1644–1650

    Article  Google Scholar 

  61. Ranganath HS, Kuntimad G (1999) Object detection using pulse coupled neural networks. IEEE Trans Neural Netw 10(3):615–620

    Article  Google Scholar 

  62. Yu B, Zhang L (2004) Pulse-coupled neural networks for contour and motion matchings. IEEE Trans Neural Netw 15(5):1186–1201

    Article  Google Scholar 

  63. Ekblad U, Kinser JM, Atmer J, Zetterlund N (2004) The intersecting cortical model in image processing. Nuclear Instrum Methods Phys Res Sect A 525(1):392–396

    Article  Google Scholar 

  64. Ekblad U, Kinser JM (2004) Theoretical foundation of the intersecting cortical model and its use for change detection of aircraft, cars, and nuclear explosion tests. Signal Process 84(7):1131–1146

    Article  MATH  Google Scholar 

  65. Ji L, Zhang Y (2008) Fingerprint orientation field estimation using ridge projection. Pattern Recognit 41(5):1491–1503

    Article  MATH  Google Scholar 

  66. Hassanien AE, Abraham A, Grosan C (2009) Spiking neural network and wavelets for hiding iris data in digital images. Soft Comput 13(4):401–416

    Article  Google Scholar 

  67. Zhang X, Minai AA (2004) Temporally sequenced intelligent block-matching and motion-segmentation using locally coupled networks. IEEE Trans Neural Netw 15(5):1202–1214

    Article  Google Scholar 

  68. Li Z, Hayward R, Zhang J, Liu Y, Walker R (2009) Towards automatic tree crown detection and delineation in spectral feature space using PCNN and morphological reconstruction. IEEE Proc ICIP 16:1705–1708

    Google Scholar 

  69. Hassanien AE, Al-Qaheri H, El-Dahshan E-SA (2011) Prostate boundary detection in ultrasound images using biologically-inspired spiking neural network. Appl Soft Comput 11(2):2035–2041

    Article  Google Scholar 

  70. Ge W, Zhao H, Li X (2011) Gyroscope pivot bearing dimension and surface defect detection. Sensors 11(3):3227–3248

    Article  Google Scholar 

  71. He D, Liu S, Liang X, Cai C (2011) Improved saliency toolbox/itti model for region of interest extraction. Opt Eng 50(9):097202–097202

    Article  Google Scholar 

  72. Zhuang H, Low K-S, Yau W-Y (2012) Multichannel pulse-coupled-neural-network-based color image segmentation for object detection. IEEE Trans Ind Electron 59(8):3299–3308

    Article  Google Scholar 

  73. Liu S, He D, Liang X (2012) An improved hybrid model for automatic salient region detection. IEEE Signal Process Lett 19(4):207–210

    Article  Google Scholar 

  74. Gu X, Fang Y, Wang Y (2013) Attention selection using global topological properties based on pulse coupled neural network. Comput Vis Image Underst 117(10):1400–1411

    Article  Google Scholar 

  75. Ni Q, Gu X (2014) Video attention saliency mapping using pulse coupled neural network and optical flow. In: IEEEproceedings of IJCNN, pp 340–344

  76. Chen Y, Ma Y, Kim DH, Park S-K (2015) Region-based object recognition by color segmentation using a simplified PCNN. IEEE Trans Neural Netw Learn Syst 26(8):1682–1697

    Article  MathSciNet  Google Scholar 

  77. Karvonen JA (2004) Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks. IEEE Trans Geosci Remote Sens 42(7):1566–1574

    Article  Google Scholar 

  78. Li Z, Hayward R, Walker R, Liu Y (2011) A biologically inspired object spectral-texture descriptor and its application to vegetation classification in power-line corridors. IEEE Geosci Remote Sens Lett 8(4):631–635

    Article  Google Scholar 

  79. Pratola C, Del Frate F, Schiavon G, Solimini D (2013) Toward fully automatic detection of changes in suburban areas from VHR SAR images by combining multiple neural-network models. IEEE Trans Geosci Remote Sens 51(4):2055–2066

    Article  Google Scholar 

  80. Taravat A, Latini D, Del Frate F (2014) Fully automatic dark-spot detection from SAR imagery with the combination of nonadaptive weibull multiplicative model and pulse-coupled neural networks. IEEE Trans Geosci Remote Sens 52(5):2427–2435

    Article  Google Scholar 

  81. Zhong Y, Liu W, Zhao J, Zhang L (2015) Change detection based on pulse-coupled neural networks and the NMI feature for high spatial resolution remote sensing imagery. IEEE Geosci Remote Sens Lett 12(3):537–541

    Article  Google Scholar 

  82. Schäfer M, Schönauer T, Wolff C, Hartmann G, Klar H, Rückert U (2002) Simulation of spiking neural networks-architectures and implementations. Neurocomputing 48(1):647–679

    Article  MATH  Google Scholar 

  83. Schoenauer T, Atasoy S, Mehrtash N, Klar H (2002) Neuropipe-chip: a digital neuro-processor for spiking neural networks. IEEE Trans Neural Netw 13(1):205–213

    Article  Google Scholar 

  84. Mehrtash N, Jung D, Hellmich HH, Schoenauer T, Lu VT, Klar H (2003) Synaptic plasticity in spiking neural networks (\(\text{ SP }^2\text{ INN }\)): a system approach. IEEE Trans Neural Netw 14(5):980–992

    Article  Google Scholar 

  85. Mehrtash N, Jung D, Klar H (2003) Image preprocessing with dynamic synapses. Neural Comput Appl 12(1):33–41

    Article  Google Scholar 

  86. von der Malsburg C (1999) The what and why of binding: the modeler’s perspective. Neuron 24(1):95–104

    Article  Google Scholar 

  87. Chen L (2001) Perceptual organization: to reverse back the inverted (upside-down) question of feature binding. Vis Cogn 8(3–5):287–303

    Article  Google Scholar 

  88. Elliffe MCM, Rolls ET, Stringer SM (2002) Invariant recognition of feature combinations in the visual system. Biol Cybern 86(1):59–71

    Article  MATH  Google Scholar 

  89. Zhang J, Zhan K, Ma Y (2007) Rotation and scale invariant antinoise PCNN features for content-based image retrieval. Neural Netw World 2(07):121–132

    Google Scholar 

  90. Zhan K, Zhang H, Ma Y (2009) New spiking cortical model for invariant texture retrieval and image processing. IEEE Trans Neural Netw 20(12):1980–1986

    Article  Google Scholar 

  91. Ma Y, Liu L, Zhan K, Wu Y (2010) Pulse-coupled neural networks and one-class support vector machines for geometry invariant texture retrieval. Image Vis Comput 28(11):1524–1529

    Article  Google Scholar 

  92. Li X, Ma Y, Wang Z, Yu W (2012) Geometry-invariant texture retrieval using a dual-output pulse-coupled neural network. Neural Comput 24(1):194–216

    Article  Google Scholar 

  93. Zhan K, Teng J, Ma Y (2013) Spiking cortical model for rotation and scale invariant texture retrieval. J Inf Hiding Multimed Signal Process 4(3):155–165

    Google Scholar 

  94. Gu X (2008) Feature extraction using unit-linking pulse coupled neural network and its applications. Neural Process Lett 27(1):25–41

    Article  MathSciNet  Google Scholar 

  95. Ebied HM, Revett K, Tolba MF (2013) Evaluation of unsupervised feature extraction neural networks for face recognition. Neural Comput Appl 22(6):1211–1222

    Article  Google Scholar 

  96. Wang W, Zhou W, Zhao X (2014) Airplane extraction and identification by improved PCNN with wavelet transform and modified Zernike moments. Imaging Sci J 62(1):27–34

    Article  Google Scholar 

  97. Mohammed MM, Badr A, Abdelhalim MB (2015) Image classification and retrieval using optimized pulse-coupled neural network. Expert Syst Appl 42(11):4927–4936

    Article  Google Scholar 

  98. Srinivasan R, Kinser JM (1998) A foveating-fuzzy scoring target recognition system. Pattern Recognit 31(8):1149–1158

    Article  Google Scholar 

  99. Allen FT, Kinser JM, Caulfield HJ (1999) A neural bridge from syntactic to statistical pattern recognition. Neural Netw 12(3):519–526

    Article  Google Scholar 

  100. Rughooputh HCS, Rughooputh SDDV (2000) Spectral recognition using a modified Eckhorn neural network model. Image Vis Comput 18(14):1101–1103

    Article  Google Scholar 

  101. Mureşan RC (2003) Pattern recognition using pulse-coupled neural networks and discrete Fourier transforms. Neurocomputing 51:487–493

    Article  Google Scholar 

  102. Ursino M, Magosso E, Cuppini C (2009) Recognition of abstract objects via neural oscillators: interaction among topological organization, associative memory and gamma band synchronization. IEEE Trans Neural Netw 20(2):316–335

    Article  Google Scholar 

  103. Wang X, Lei L, Wang M (2012) Palmprint verification based on 2D-Gabor wavelet and pulse-coupled neural network. Knowl Based Syst 27:451–455

    Article  Google Scholar 

  104. Elons AS, Abull-Ela M, Tolba MF (2013) A proposed PCNN features quality optimization technique for pose-invariant 3D arabic sign language recognition. Appl Soft Comput 13(4):1646–1660

    Article  Google Scholar 

  105. Tolba MF, Samir A, Aboul-Ela M (2013) Arabic sign language continuous sentences recognition using PCNN and graph matching. Neural Comput Appl 23(3–4):999–1010

    Article  Google Scholar 

  106. Hou Y, Rao N, Lun X, Liu F (2014) Gait object extraction and recognition in dynamic and complex scene using pulse coupled neural network and feature fusion. J Med Imaging Health Inform 4(3):325–330

    Article  Google Scholar 

  107. Wang Z, Sun X, Zhang Y, Zhu Y, Ma Y (2016) Leaf recognition based on PCNN. Neural Comput Appl 27(4):899–908

    Article  Google Scholar 

  108. Li H, Jin X, Yang N, Yang Z (2015) The recognition of landed aircrafts based on PCNN model and affine moment invariants. Pattern Recognit Lett 51:23–29

    Article  Google Scholar 

  109. Zhan K, Teng J, Shi J, Li Q, Wang M (2016) Feature-linking model for image enhancement. Neural Comput 28(6):1072–1100

    Article  Google Scholar 

  110. Chacon MIM, Zimmerman AS (2003) Image processing using the PCNN time matrix as a selective filter. IEEE Proc ICIP 1:877–880

    Google Scholar 

  111. Gu X, Wang H, Yu D (2001) Binary image restoration using pulse coupled neural network. Proc Neural Inf Process 8:922–927

    Google Scholar 

  112. Ma Y, Shi F, Li L (2003) Gaussian noise filter based on PCNN. IEEE Proc Neural Netw Signal Process 1:149–151

    Google Scholar 

  113. Ma Y, Shi F, Li L (2003) A new kind of impulse noise filter based on PCNN. IEEE Proc Neural Netw Signal Process 1:152–155

    Google Scholar 

  114. Zhang J, Dong J, Shi M (2005) An adaptive method for image filtering with pulse-coupled neural networks. IEEE Proc ICIP 2:133–136

    Google Scholar 

  115. Ji L, Zhang Y, Shang L (2007) An improved pulse coupled neural network for image processing. Neural Comput Appl 17(3):255–263

    Article  Google Scholar 

  116. Ji L, Zhang Y (2008) A mixed noise image filtering method using weighted-linking PCNNs. Neurocomputing 71(13):2986–3000

    Article  Google Scholar 

  117. Zhang D, Nishimura TH (2010) Pulse coupled neural network based anisotropic diffusion method for 1/f noise reduction. Math Comput Model 52(11):2085–2096

    Article  Google Scholar 

  118. Sang Y, Zhang Y, Zhou J (2010) Spatial point-data reduction using pulse coupled neural network. Neural Process Lett 32(1):11–29

    Article  Google Scholar 

  119. Zhang D, Mabu S, Hirasawa K (2011) Image denoising using pulse coupled neural network with an adaptive Pareto genetic algorithm. IEEJ Trans Electr Electron Eng 6(5):474–482

    Article  Google Scholar 

  120. Yuan J, Zhang H, Ma Y (2012) Effectual switching filter for removing impulse noise using a SCM detector. Opt Eng 51(3):037003

    Article  Google Scholar 

  121. Padgett ML, Johnson JL (1997) Pulse coupled neural networks (PCNN) and wavelets: biosensor applications. IEEE Proc ICNN 4:2507–2512

    Google Scholar 

  122. Johnson JL, Padgett ML, Friday WA (1997) Multiscale image factorization. IEEE Proc ICNN 3:1465–1468

    Google Scholar 

  123. Johnson JL, Taylor JR, Anderson M (1999) Pulse-coupled neural network shadow compensation. In: Proceedings of AeroSense, International Society for Optics and Photonics pp 452–456

  124. Gu X, Yu D, Zhang L (2005) Image shadow removal using pulse coupled neural network. IEEE Trans Neural Netw 16(3):692–698

    Article  Google Scholar 

  125. Lindblad T, Kinser JM (1999) Inherent features of wavelets and pulse coupled networks. IEEE Trans Neural Netw 10(3):607–614

    Article  Google Scholar 

  126. Broussard RP, Rogers SK (1996) Physiologically motivated image fusion using pulse-coupled neural networks. In: Proceedings of SPIE, aerospace/defense sensing and controls, International Society for Optics and Photonics, pp 372–383

  127. Kinser JM (1997) Pulse-coupled image fusion. Opt Eng 36(3):737–742

    Article  Google Scholar 

  128. Inguva R, Johnson JL, Schamschula MP (1999) Multifeature fusion using pulse-coupled neural networks. In: AeroSense’99, International Society for Optics and Photonics, pp 342–350

  129. Broussard RP, Rogers SK, Oxley ME, Tarr GL (1999) Physiologically motivated image fusion for object detection using a pulse coupled neural network. IEEE Trans Neural Netw 10(3):554–563

    Article  Google Scholar 

  130. Kinser JM (1999) Spiral image fusion by interchannel autowaves. In: Ninth workshop on virtual intelligence/dynamic neural networks: neural networks fuzzy systems, evolutionary systems and virtual Re, International Society for Optics and Photonics, vol 9, pp 148–154

  131. Li M, Cai W, Tan Z (2006) A region-based multi-sensor image fusion scheme using pulse-coupled neural network. Pattern Recognit Lett 27(16):1948–1956

    Article  Google Scholar 

  132. Huang W, Jing Z (2007) Multi-focus image fusion using pulse coupled neural network. Pattern Recognit Lett 28(9):1123–1132

    Article  Google Scholar 

  133. Yang S, Wang M, Lu Y, Qi W, Jiao L (2009) Fusion of multiparametric SAR images based on SW-nonsubsampled contourlet and PCNN. Signal Process 89(12):2596–2608

    Article  MATH  Google Scholar 

  134. Agrawal D, Singhai J (2010) Multifocus image fusion using modified pulse coupled neural network for improved image quality. IET Image Process 4(6):443–451

    Article  Google Scholar 

  135. Chang W, Guo L, Fu Z, Liu K (2010) Hyperspectral multi-band image fusion algorithm by using pulse coupled neural networks. J Infrared Millim Waves 29(3):205-209,235

    Article  Google Scholar 

  136. Yang S, Wang M, Jiao L, Wu R, Wang Z (2010) Image fusion based on a new contourlet packet. Inf Fusion 11(2):78–84

    Article  Google Scholar 

  137. Chai Y, Li HF, Qu JF (2010) Image fusion scheme using a novel dual-channel PCNN in lifting stationary wavelet domain. Opt Commun 283(19):3591–3602

    Article  Google Scholar 

  138. Chai Y, Li HF, Guo MY (2011) Multifocus image fusion scheme based on features of multiscale products and PCNN in lifting stationary wavelet domain. Opt Commun 284(5):1146–1158

    Article  Google Scholar 

  139. Yang S, Wang M, Jiao L (2012) Contourlet hidden Markov tree and clarity-saliency driven PCNN based remote sensing images fusion. Appl Soft Comput 12(1):228–237

    Article  Google Scholar 

  140. Geng P, Wang Z, Zhang Z, Xiao Z (2012) Image fusion by pulse couple neural network with shearlet. Opt Eng 51(6):067005

    Article  Google Scholar 

  141. Das S, Kundu MK (2012) NSCT-based multimodal medical image fusion using pulse-coupled neural network and modified spatial frequency. Med Biol Eng Comput 50(10):1105–1114

    Article  Google Scholar 

  142. Das S, Kundu MK (2013) A neuro-fuzzy approach for medical image fusion. IEEE Trans Biomed Eng 60(12):3347–3353

    Article  Google Scholar 

  143. El-taweel GS, Helmy AK (2013) Image fusion scheme based on modified dual pulse coupled neural network. IET Image Process 7(5):407–414

    Article  Google Scholar 

  144. Kang B, Zhu W, Yan J (2013) Fusion framework for multi-focus images based on compressed sensing. IET Image Process 7(4):290–299

    Article  MathSciNet  Google Scholar 

  145. Lin Z, Yan J, Yuan Y (2013) Algorithm for image fusion based on orthogonal grouplet transform and pulse-coupled neural network. J Electron Imaging 22(3):033028

    Article  Google Scholar 

  146. Shi C, Miao Q, Xu P (2013) A novel algorithm of remote sensing image fusion based on shearlets and PCNN. Neurocomputing 117:47–53

    Article  Google Scholar 

  147. Kong W, Liu J (2013) Technique for image fusion based on nonsubsampled shearlet transform and improved pulse-coupled neural network. Opt Eng 52(1):017001

    Article  Google Scholar 

  148. Zhang B, Zhang C, Liu Y, Wu J, He L (2014) Multi-focus image fusion algorithm based on compound pcnn in surfacelet domain. Optik 125(1):296–300

    Article  Google Scholar 

  149. Zhang B, Lu X, Jia W (2013) A multi-focus image fusion algorithm based on an improved dual-channel PCNN in NSCT domain. Optik 124(20):4104–4109

    Article  Google Scholar 

  150. Zhang B, Zhang C, Wu J, Liu H (2014) A medical image fusion method based on energy classification of BEMD components. Optik 125(1):146–153

    Article  Google Scholar 

  151. Zhao Y, Zhao Q, Hao A (2014) Multimodal medical image fusion using improved multi-channel PCNN. Biomed Mater Eng 24(1):221–228

    MathSciNet  Google Scholar 

  152. Kong W, Zhang L, Lei Y (2014) Novel fusion method for visible light and infrared images based on NSST–SF–PCNN. Infrared Phys Technol 65:103–112

    Article  Google Scholar 

  153. Lang J, Hao Z (2014) Novel image fusion method based on adaptive pulse coupled neural network and discrete multi-parameter fractional random transform. Opt Lasers Eng 52:91–98

    Article  Google Scholar 

  154. Zhang X, Li X, Feng Y, Zhao H, Liu Z (2014) Image fusion with internal generative mechanism. Expert Syst Appl 42(5):2382–2391

    Article  Google Scholar 

  155. Yin H, Liu Z, Fang B, Li Y (2015) A novel image fusion approach based on compressive sensing. Opt Commun 354:299–313

    Article  Google Scholar 

  156. Ganasala P, Kumar V (2016) Feature-motivated simplified adaptive PCNN-based medical image fusion algorithm in NSST domain. J Digit Imaging 29(1):73–85

    Article  Google Scholar 

  157. Lang J, Hao Z (2015) Image fusion method based on adaptive pulse coupled neural network in the discrete fractional random transform domain. Optik 126(23):3644–3651

    Article  Google Scholar 

  158. Peng G, Wang Z, Liu S, Zhuang S (2015) Image fusion by combining multiwavelet with nonsubsampled direction filter bank. Soft Comput. doi:10.1007/s00500-015-1893-0

    Google Scholar 

  159. Koch C, Segev I (2000) The role of single neurons in information processing. Nature Neurosci 3:1171–1177

    Article  Google Scholar 

  160. Gove A, Grossberg S, Mingolla E (1995) Brightness perception, illusory contours, and corticogeniculate feedback. Vis Neurosci 12(06):1027–1052

    Article  Google Scholar 

  161. Barnes T, Mingolla E (2013) A neural model of visual figure-ground segregation from kinetic occlusion. Neural Netw 37:141–164

    Article  Google Scholar 

  162. Brosch T, Neumann H (2014) Interaction of feedforward and feedback streams in visual cortex in a firing-rate model of columnar computations. Neural Netw 54:11–16

    Article  MATH  Google Scholar 

  163. French AS, Stein RB (1970) A flexible neural analog using integrated circuits. IEEE Trans Biomed Eng 3:248–253

    Article  Google Scholar 

  164. Kinser JM (1996) A simplified pulse-coupled neural network. Proc SPIE 2760:563–567

    Article  Google Scholar 

  165. Gu X, Yu D, Zhang L (2004) Image thinning using pulse coupled neural network. Pattern Recognit Lett 25(9):1075–1084

    Article  Google Scholar 

  166. Ji L, Zhang Y, Shang L, Pu X (2007) Binary fingerprint image thinning using template-based PCNNs. IEEE Tran Syst Man Cybern Part B Cybern 37(5):1407–1413

    Article  Google Scholar 

  167. Shang L, Zhang Y, Ji L (2007) Binary image thinning using autowaves generated by PCNN. Neural Process Lett 25(1):49–62

    Article  Google Scholar 

  168. Shang L, Zhang Y, Ji L (2009) Constrained ZIP code segmentation by a PCNN-based thinning algorithm. Neurocomputing 72(7):1755–1762

    Article  Google Scholar 

  169. Caulfield HJ, Kinser JM (1998) Finding the shortest path in the shortest time using PCNN’s. IEEE Trans Neural Netw 10(3):604–606

    Article  Google Scholar 

  170. Qu H, Yang SX, Willms AR, Zhang Y (2009) Real-time robot path planning based on a modified pulse-coupled neural network model. IEEE Trans Neural Netw 20(11):1724–1739

    Article  Google Scholar 

  171. Zhang J, Zhao X, He X (2014) A minimum resource neural network framework for solving multiconstraint shortest path problems. IEEE Trans Neural Netw Learn Syst 25(8):1566–1582

    Article  Google Scholar 

  172. McEniry R, Johnson JL (1997) Methods for image segmentation using a pulse coupled neural network. Neural Netw World 2(97):177–189

    Google Scholar 

  173. Wang D (2005) The time dimension for scene analysis. IEEE Trans Neural Netw 16(6):1401–1426

    Article  Google Scholar 

  174. Rybak IA, Shevtsova NA, Podladchikova LN, Golovan AV (1991) A visual cortex domain model and its use for visual information processing. Neural Netw 4(1):3–13

    Article  Google Scholar 

  175. Rybak IA, Shevtsova NA, Sandler VM (1992) The model of a neural network visual preprocessor. Neurocomputing 4(1–2):93–102

    Article  Google Scholar 

  176. Wang D, Terman D (1997) Image segmentation based on oscillatory correlation. Neural Comput 9(4):805–836

    Article  Google Scholar 

  177. Brodatz P (1966) Textures: a photographic album for artists and designers. Dover Publications, New York

    Google Scholar 

  178. Gonzalez RC, Woods RE, Eddins SL (2009) Digital image processing using MATLAB, 2nd edn. Gatesmark Publishing, New Jersey

    Google Scholar 

  179. Ma Y, Lin D, Zhang B, Liu Q, Gu J (2007) A novel algorithm of image gaussian noise filtering based on PCNN time matrix. In: IEEE proceedingsof signal processing and communications, pp 1499–1502

  180. Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. Henry H and Co., Inc, New York

    Google Scholar 

Download references

Funding

This study is funded by the National Science Foundation of China under the Grant No. 61201422 and the Specialized Research Fund for the Doctoral Program of Higher Education under the Grant No. 20120211120013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zhan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Statement

This study does not involve human participants or animals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, K., Shi, J., Wang, H. et al. Computational Mechanisms of Pulse-Coupled Neural Networks: A Comprehensive Review. Arch Computat Methods Eng 24, 573–588 (2017). https://doi.org/10.1007/s11831-016-9182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9182-3

Keywords

Navigation