Skip to main content
Log in

Non-intrusive Coupling: Recent Advances and Scalable Nonlinear Domain Decomposition

Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper provides a detailed review of the global/local non-intrusive coupling algorithm. Such method allows to alter a global finite element model, without actually modifying its corresponding numerical operator. We also look into improvements of the initial algorithm (Quasi-Newton and dynamic relaxation), and provide comparisons based on several relevant test cases. Innovative examples and advanced applications of the non-intrusive coupling algorithm are provided, granting a handy framework for both researchers and engineers willing to make use of such process. Finally, a novel nonlinear domain decomposition method is derived from the global/local non-intrusive coupling strategy, without the need to use a parallel code or software. Such method being intended to large scale analysis, we show its scalability. Jointly, an efficient high level Message Passing Interface coupling framework is also proposed, granting an universal and flexible way for easy software coupling. A sample code is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Agence Nationale de la Recherche (2014) Icare project. URL http://www.institut-clement-ader.org/icare/

  2. Agouzal A, Thomas JM (1995) Une méthode d’éléments finis hybrides en décomposition de domaines. ESAIM Math Model Num Anal 29:749–764

    MATH  MathSciNet  Google Scholar 

  3. Akgün MA, Garcelon JH, Haftka RT (2001) Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas. Int J Numer Meth Eng 50(7):1587–1606

    Article  MATH  Google Scholar 

  4. Amdouni S, Moakher M, Renard Y (2014) A local projection stabilization of fictitious domain method for elliptic boundary value problems. Appl Numer Math 76:60–75

    Article  MATH  MathSciNet  Google Scholar 

  5. Barrière L (2014) Stratégies de calcul intensif pour la simulation du post-flambement local des grandes structures composites raidies aéronautiques. PhD Thesis, INSA de Toulouse

  6. Barrière L, Marguet S, Castanié B, Cresta P, Passieux JC (2013) An adaptive model reduction strategy for post-buckling analysis of stiffened structures. Thin Wall Struct 73:81–93

    Article  Google Scholar 

  7. Becker R, Hansbo P, Stenberg R (2003) A finite element method for domain decomposition with non-matching grids. ESAIM Math Model Numer Anal 37(02):209–225

    Article  MATH  MathSciNet  Google Scholar 

  8. Belgacem FB (1999) The mortar finite element method with Lagrange multipliers. Numer Math 84(2):173–197

    Article  MATH  MathSciNet  Google Scholar 

  9. Ben Dhia H, Jamond O (2010) On the use of XFEM within the Arlequin framework for the simulation of crack propagation. Comput Methods Appl Mech Eng 199(21):1403–1414

    Article  MATH  MathSciNet  Google Scholar 

  10. Ben Dhia H, Rateau G (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Meth Eng 62(11):1442–1462

    Article  MATH  Google Scholar 

  11. Ben Dhia H, Elkhodja N, Roux FX (2008) Multimodeling of multi-alterated structures in the Arlequin framework: solution with a domain-decomposition solver. Eur J Comput Mech 17(5–7):969–980

    MATH  Google Scholar 

  12. Bernardi C, Maday Y, Patera AT (1994) A new nonconforming approach to domain decomposition: the Mortar element method. Nonlinear partial differential equations and their applications, Collège de France Seminar XI, H Brezis and JL Lions (Eds) pp 13–51

  13. Bernardi C, Maday Y, Rapetti F (2005) Basics and some applications of the mortar element method. GAMM-Mitteilungen 28(2):97–123

    Article  MATH  MathSciNet  Google Scholar 

  14. Bettinotti O, Allix O, Malherbe B (2014) A coupling strategy for adaptive local refinement in space and time with a fixed global model in explicit dynamics. Comput Mech 53(4):561–574

    Article  MATH  MathSciNet  Google Scholar 

  15. Bjorstad PE, Widlund OB (1986) Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J Num Anal 23(6):1097–1120

    Article  MathSciNet  Google Scholar 

  16. Brancherie D, Dambrine M, Vial G, Villon P (2008) Effect of surface defects on structure failure: a two-scale approach. Eur J Comput Mech 17(5–7):613–624

    MATH  Google Scholar 

  17. Brezzi F, Marini LD (2005) The three-field formulation for elasticity problems. GAMM-Mitteilungen 28(1):124–153

    Article  MATH  MathSciNet  Google Scholar 

  18. Chahine E, Laborde P, Renard Y (2008) Spider-XFEM, an extended finite element variant for partially unknown crack-tip displacement. Eur J Comput Mech 17(5–7):625–636

    MATH  Google Scholar 

  19. Chahine E, Laborde P, Renard Y (2009) A reduced basis enrichment for the eXtended finite element method. Math Model Nat Phenom 4(01):88–105

    Article  MATH  MathSciNet  Google Scholar 

  20. Chantrait T, Rannou J, Gravouil A (2014) Low intrusive coupling of implicit and explicit time integration schemes for structural dynamics: application to low energy impacts on composite structures. Finite Elem Anal Des 86:23–33

    Article  MathSciNet  Google Scholar 

  21. Chevreuil M, Nouy A, Safatly E (2013) A multiscale method with patch for the solution of stochastic partial differential equations with localized uncertainties. Comput Methods Appl Mech Eng 255:255–274

    Article  MATH  MathSciNet  Google Scholar 

  22. Conn AR, Gould NIM, Toint PL (1991) Convergence of quasi-newton matrices generated by the symmetric rank one update. Math Program 50(1–3):177–195

    Article  MATH  MathSciNet  Google Scholar 

  23. Cresta P, Allix O, Rey C, Guinard S (2007) Nonlinear localization strategies for domain decomposition methods: application to post-buckling analyses. Comput Methods Appl Mech Eng 196(8):1436–1446

    Article  MATH  MathSciNet  Google Scholar 

  24. Daghia F, Ladevèze P (2012) A micro-meso computational strategy for the prediction of the damage and failure of laminates. Compos Struct 94(12):3644–3653

    Article  Google Scholar 

  25. Daridon L, Dureisseix D, Garcia S, Pagano S (2011) Changement d’échelles et zoom structural. In: 10e colloque national en calcul des structures, Giens, France

  26. Dohrmann C (2003) A preconditioner for substructuring based on constrained energy minimization. SIAM J Sci Comput 25(1):246–258

    Article  MATH  MathSciNet  Google Scholar 

  27. Duarte CA, Kim DJ (2008) Analysis and applications of a generalized finite element method with global-local enrichment functions. Comput Methods Appl Mech Eng 197(6–8):487–504

    Article  MATH  MathSciNet  Google Scholar 

  28. Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Meth Eng 32(6):1205–1227

    Article  MATH  Google Scholar 

  29. Farhat C, Mandel J, Roux FX (1994) Optimal convergence properties of the FETI domain decomposition method. Comput Methods Appl Mech Eng 115(3–4):365–385

    Article  MathSciNet  Google Scholar 

  30. Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D (2001) FETI-DP: a dual-primal unified FETI method - Part I: A faster alternative to the two-level FETI method. Int J Numer Meth Eng 50(7):1523–1544

    Article  MATH  MathSciNet  Google Scholar 

  31. Fritz A, Hüeber S, Wohlmuth B (2004) A comparison of mortar and Nitsche techniques for linear elasticity. Calcolo 41(3):115–137

    Article  MATH  MathSciNet  Google Scholar 

  32. Gander MJ (2008) Schwarz methods over the course of time. Electron Trans Numer Anal 31:228–255

    MATH  MathSciNet  Google Scholar 

  33. Gander MJ, Japhet C (2013) Algorithm 932: PANG: software for nonmatching grid projections in 2D and 3D with linear complexity. ACM Trans Math Softw 40(1):1–25

    Article  MathSciNet  Google Scholar 

  34. Gendre L, Allix O, Gosselet P, Comte F (2009) Non-intrusive and exact global/local techniques for structural problems with local plasticity. Comput Mech 44(2):233–245

    Article  MATH  MathSciNet  Google Scholar 

  35. Gendre L, Allix O, Gosselet P (2011) A two-scale approximation of the Schur complement and its use for non-intrusive coupling. Int J Numer Meth Eng 87(9):889–905

    Article  MATH  MathSciNet  Google Scholar 

  36. Gerstenberger A, Tuminaro RS (2013) An algebraic multigrid approach to solve extended finite element method based fracture problems. Int J Numer Meth Eng 94(3):248–272

    Article  MathSciNet  Google Scholar 

  37. Glowinski R, Le Tallec P (1990) Augmented lagrangian interpretation of the nonoverlapping Schwartz alternating method. SIAM, Philadelphia, pp 224–231

    Google Scholar 

  38. Gosselet P, Rey C (2006) Non-overlapping domain decomposition methods in structural mechanics. Archiv Comput Methods Eng 13(4):515–572

    Article  MATH  MathSciNet  Google Scholar 

  39. Guguin G, Allix O, Gosselet P, Guinard S (2014) Nonintrusive coupling of 3D and 2D laminated composite models based on finite element 3D recovery. Int J Numer Meth Eng 98(5):324–343

    Article  MathSciNet  Google Scholar 

  40. Guidault PA, Allix O, Champaney L, Cornuault C (2008) A multiscale extended finite element method for crack propagation. Comput Methods Appl Mech Eng 197(5):381–399

    Article  MATH  Google Scholar 

  41. Gupta P, Pereira J, Kim DJ, Duarte C, Eason T (2012) Analysis of three-dimensional fracture mechanics problems: A non-intrusive approach using a generalized finite element method. Eng Fract Mech 90:41–64

    Article  Google Scholar 

  42. Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191(47–48):5537–5552

    Article  MATH  MathSciNet  Google Scholar 

  43. Hansbo A, Hansbo P, Larson MG (2003) A finite element method on composite grids based on Nitsche’s method. ESAIM Math Model Numer Anal 37(03):495–514

    Article  MATH  MathSciNet  Google Scholar 

  44. Hautefeuille M, Annavarapu C, Dolbow JE (2012) Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int J Numer Meth Eng 90(1):40–64

    Article  MATH  MathSciNet  Google Scholar 

  45. Herry B, Di Valentin L, Combescure A (2002) An approach to the connection between subdomains with non-matching meshes for transient mechanical analysis. Int J Numer Meth Eng 55(8):973–1003

    Article  MATH  Google Scholar 

  46. Hirai I, Wang BP, Pilkey WD (1984) An efficient zooming method for finite element analysis. Int J Numer Meth Eng 20(9):1671–1683

    Article  MATH  Google Scholar 

  47. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127(1–4):387–401

    Article  MATH  Google Scholar 

  48. Ibrahimbegović A, Markovič D (2003) Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures. Comput Methods Appl Mech Eng 192(28–30):3089–3107

    Article  MATH  Google Scholar 

  49. Irons BM, Tuck RC (1969) A version of the Aitken accelerator for computer iteration. Int J Numer Meth Eng 1(3):275–277

    Article  MATH  Google Scholar 

  50. Kelley CT, Sachs EW (1998) Local convergence of the symmetric rank-one iteration. Comput Optim Appl 9(1):43–63

    Article  MATH  MathSciNet  Google Scholar 

  51. Khalfan HF, Byrd RH, Schnabel RB (1993) A theoretical and experimental study of the symmetric rank-one update. SIAM J Optim 3(1):1–24

    Article  MATH  MathSciNet  Google Scholar 

  52. Khiyabani FM, Hassan MA, Leong WJ (2010) Convergence of symmetric rank-one method based on modified Quasi-Newton equation. J Math Res 2(3):97–102

    Article  MATH  Google Scholar 

  53. Kim DJ, Duarte CA, Proenca SP (2012) A generalized finite element method with global-local enrichment functions for confined plasticity problems. Comput Mech 50(5):563–578

    Article  MATH  MathSciNet  Google Scholar 

  54. Küttler U, Wall WA (2008) Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput Mech 43(1):61–72

    Article  MATH  Google Scholar 

  55. Laborde P, Lozinski A (in progress) Numerical zoom for multi-scale and multi-model problems

  56. Ladeveze P (1985) Sur une famille d’algorithmes en mécanique des structures. Comptes-rendus des séances de l’Académie des sciences Série 2, Mécanique-physique, chimie, sciences de l’univers, sciences de la terre 300(2):41–44

  57. Ladeveze P, Nouy A, Loiseau O (2002) A multiscale computational approach for contact problems. Comput Methods Appl Mech Eng 191(43):4869–4891

    Article  MATH  MathSciNet  Google Scholar 

  58. Ladevèze P, Dureisseix D (1999) Une nouvelle stratégie de calcul micro/macro en mécanique des structures. Comptes Rendus de l’Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy 327(12):1237–1244

    Article  MATH  Google Scholar 

  59. Ladevèze P, Loiseau O, Dureisseix D (2001) A micro-macro and parallel computational strategy for highly heterogeneous structures. Int J Numer Meth Eng 52(1–2):121–138

    Article  Google Scholar 

  60. Lions PL (1987) On the Schwarz method. In: Glowinski R, Golub GH, Meurant GA, Périaux J (eds). Domain decomposition methods for partial differential equations. Paris, France

  61. Liu YJ, Sun Q, Fan XL (2014) A non-intrusive global/local algorithm with non-matching interface: derivation and numerical validation. Comput Methods Appl Mech Eng 277:81–103

    Article  Google Scholar 

  62. Mandel J (1993) Balancing domain decomposition. Commun Numer Methods Eng 9:233–241

    Article  MATH  MathSciNet  Google Scholar 

  63. Mandel J, Dohrmann CR (2003) Convergence of a balancing domain decomposition by constraints and energy minimization. Numer Linear Algebra Appl 10(7):639–659

    Article  MATH  MathSciNet  Google Scholar 

  64. Mao KM, Sun CT (1991) A refined global-local finite element analysis method. Int J Numer Meth Eng 32(1):29–43

    Article  MATH  Google Scholar 

  65. Massing A, Larson MG, Logg A (2012) Efficient implementation of finite element methods on non-matching and overlapping meshes in 3D. arXiv preprint

  66. Melenk J, Babuška I (1996) The partition of unity finite element method: Basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314

    Article  MATH  Google Scholar 

  67. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1):131–150

    Article  MATH  Google Scholar 

  68. Nguyen VP, Kerfriden P, Claus S, Bordas SPA (2013) Nitsche’s method for mixed dimensional analysis: conforming and non-conforming continuum-beam and continuum-plate coupling. arXiv preprint

  69. Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer, New York

  70. Oden JT, Vemaganti K, Moës N (1999) Hierarchical modeling of heterogeneous solids. Comput Methods Appl Mech Eng 172(1–4):3–25

    Article  MATH  Google Scholar 

  71. Park KC, Felippa CA (2000) A variational principle for the formulation of partitioned structural systems. Int J Numer Meth Eng 47(1–3):395–418

    Article  MATH  MathSciNet  Google Scholar 

  72. Passieux JC, Ladevèze P, Néron D (2010) A scalable time-space multiscale domain decomposition method: adaptive time scale separation. Comput Mech 46(4):621–633

    Article  MATH  MathSciNet  Google Scholar 

  73. Passieux JC, Gravouil A, Réthoré J, Baietto MC (2011) Direct estimation of generalized stress intensity factors using a three-scale concurrent multigrid XFEM. Int J Numer Meth Eng 85(13):1648–1666

    Article  MATH  Google Scholar 

  74. Passieux JC, Réthoré J, Gravouil A, Baietto MC (2013) Local/global non-intrusive crack propagation simulation using a multigrid XFEM solver. Comput Mech 52(6):1381–1393

    Article  MATH  Google Scholar 

  75. Pebrel J, Rey C, Gosselet P (2008) A nonlinear dual domain decomposition method : application to structural problems with damage. Int J Multiscale Comput Eng 6(3):251–262

    Article  Google Scholar 

  76. Picasso M, Rappaz J, Rezzonico V (2008) Multiscale algorithm with patches of finite elements. Commun Numer Methods Eng 24(6):477–491

    Article  MATH  MathSciNet  Google Scholar 

  77. Pironneau OP, Lozinski A (2011) Numerical Zoom for localized Multiscales. Numer Methods Partial Differ Equ 27:197–207

    Article  MATH  MathSciNet  Google Scholar 

  78. Rannou J, Gravouil A, Baïetto-Dubourg MC (2009) A local multigrid XFEM strategy for 3D crack propagation. Int J Numer Meth Eng 77(4):581–600

    Article  MATH  Google Scholar 

  79. Roux FX (2009) A FETI-2lm method for non-matching grids. In: Domain Decomposition Methods in Science and Engineering XVIII, no. 70 in Lecture Notes in Computational Science and Engineering, Springer, Berlin, pp 121–128

  80. Réthoré J, Roux S, Hild F (2010) Hybrid analytical and extended finite element method (HAX-FEM): a new enrichment procedure for cracked solids. Int J Numer Meth Eng 81(3):269–285

    Article  MATH  Google Scholar 

  81. Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190(32–33):4081–4193

  82. Whitcomb JD (1991) Iterative global/local finite element analysis. Comput Struct 40(4):1027–1031

  83. Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Num Anal 38(3):989–1012

    Article  MATH  MathSciNet  Google Scholar 

  84. Wohlmuth BI (2003) A comparison of dual Lagrange multiplier spaces for mortar finite element discretizations. ESAIM Math Model Numer Anal 36(6):995–1012

    Article  MathSciNet  Google Scholar 

  85. Wyart E, Duflot M, Coulon D, Martiny P, Pardoen T, Remacle JF, Lani F (2008) Substructuring FE-XFE approaches applied to three-dimensional crack propagation. J Comput Appl Math 215(2):626–638

    Article  MATH  MathSciNet  Google Scholar 

  86. Wyart E, Coulon D, Pardoen T, Remacle J, Lani F (2009) Application of the substructured finite element/extended finite element method (s-FE/XFE) to the analysis of cracks in aircraft thin walled structures. Eng Fract Mech 76(1):44–58

    Article  Google Scholar 

  87. Zohdi TI, Oden JT, Rodin GJ (1996) Hierarchical modeling of heterogeneous bodies. Comput Methods Appl Mech Eng 138(1–4):273–298

    Article  MATH  MathSciNet  Google Scholar 

  88. Électricité de France (2014) \(\text{ Code }\_\text{ aster }\). URL http://www.code-aster.org

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Agence Nationale de la Recherche under Grant ICARE ANR-12-MONU-0002.

Dr. Crozes (Airbus Group Innovation) is also acknowledged for providing the planetary gear carrier model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickaël Duval.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (ZIP 46 kb)

Appendix: Non-intrusive Coupling Program

Appendix: Non-intrusive Coupling Program

Jointly to this paper, the complete code used to run example from § 3.2 is also provided. It can be downloaded from [1].

The overall code is organised as follow:

  • the global model is computed by Code_Aster using structure.comm, global.py and optimisation.py files,

  • the local model is computed by Code_Aster using patch.comm and local.py,

  • the interface coupling is achieved by a Python script using coupling_engine.py and coupleur.py files,

  • the finite element meshes have been saved into the mesh.med file,

  • the Code_Aster global and local programs configuration files are global.export and local.export respectively (such files have to be adapted to the version of Code_Aster used, the one used here is STA11.4).

Each program (global, local and coupling engine) have to be launched separately (see file run.sh) with the mpirun command as we use MPI communications between them for the interface data exchange (see Fig 24). In fact, the MPI communication is based upon a client–server model, so that there is no need for a parallel version of Code_Aster. Parallelism is thus ensured by the simultaneous run of several sequential instances.

Fig. 24
figure 24

Non-intrusive coupling: MPI communication between Code_Aster and Python

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duval, M., Passieux, JC., Salaün, M. et al. Non-intrusive Coupling: Recent Advances and Scalable Nonlinear Domain Decomposition. Arch Computat Methods Eng 23, 17–38 (2016). https://doi.org/10.1007/s11831-014-9132-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9132-x

Keywords

Navigation