Skip to main content
Log in

Manipulating the frequency of intra-plant parts influences the foraging behaviour of a facultatively florivorous grasshopper

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Studying density- (total available resources) and frequency-dependent (relative abundance of resources) foraging by herbivores can shed light on our understanding of insect–plant interaction. However, these concepts are rarely investigated on different resources within an individual plant, such as flowers and leaves, even though this can be informative on how each plant individual allocates different resources and defends against florivory and folivory. We performed manipulative experiments in an insectary on the facultatively florivorous grasshoppers (Xenocatantops humilis) and flowering twigs of the tropical dogwood (Mussaenda erythrophylla). The tropical dogwood was used because each plant has both typical leaves and modified calyx lobes of the flowers which function as attractive flags. By manipulating the densities and frequencies, in terms of biomass, of leaves and flag calyx lobes, we aimed to investigate the following questions: (1) Do the grasshoppers exhibit density- and/or frequency-dependent foraging of the intra-plant structures? (2) Do the grasshoppers show a dietary preference for the intra-plant structures? (3) Do relative and/or total biomasses of the intra-plant structures affect the intensity of corolla feeding? Our results provide support for frequency-, but not density-dependent foraging. We found that relative consumption and total herbivory increase with the relative biomass of the preferred flag calyx lobes, whereas a larger corolla diameter increases the intensity of corolla feeding. Our findings suggest that the colourful flag calyx lobes attract unwanted herbivores but could potentially be a decoy against folivory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal AA, Fishbein M (2006) Plant defence syndromes. Ecology 87:S132–S149

    Article  PubMed  Google Scholar 

  • Andersson P, Löfstedt C, Hambäck PA (2013) Insect density–plant density relationships: a modified view of insect responses to resource concentrations. Oecologia 173:1333–1344

    Article  PubMed  Google Scholar 

  • Armbruster WS (1997) Exaptations link evolution of plant–herbivore and plant–pollinator interactions: a phylogenetic inquiry. Ecology 78(6):1661–1672

    Google Scholar 

  • Armbruster WS, Howard JJ, Clausen TP, Debevec EM, Loquvam JC, Matsuki M, Cerendolo B, Andel F (1997) Do biochemical exaptations link evolution of plant defence and pollination systems? Historical hypotheses and experimental tests with Dalechampia vines. Am Nat 149(3):461–484

    Article  Google Scholar 

  • Behmer ST, Raubenheimer D, Simpson SJ (2001) Frequency-dependent food selection in locusts: a geometric analysis of the role of nutrient balancing. Anim Behav 61(5):995–1005

    Article  Google Scholar 

  • Bergvall UA, Leimar O (2017) Directional associational plant defence from Red deer (Cervus elaphus) foraging decisions. Ecosphere 8(3):e01714

    Article  Google Scholar 

  • Bernays EA, Bright KL (1993) Mechanisms of dietary mixing in grasshoppers: a review. Comp Biochem Physiol A 104(1):125–131

    Article  Google Scholar 

  • Bernays EA, Chapman RF (1970) Experiments to determine the basis of food selection by Chorthippus parallelus (Zetterstedt) (Orthoptera: Acrididae) in the field. J Anim Ecol 39(3):761–776

    Article  Google Scholar 

  • Bernays EA, Chapman RF (1994) Behaviour: the process of host-plant selection. In: Bernays EA, Chapman RF (eds) Host-plant selection by phytophagous insects, pp. 95–165. Chapman and Hall, London

    Chapter  Google Scholar 

  • Bernays EA, Weiss MR (1996) Induced food preferences in caterpillars: the need to identify mechanisms. Entomol Exp Appl 78(1):1–8

    Article  Google Scholar 

  • Borges RM, Gowda V, Zacharias M (2003) Butterfly pollination and high-contrast visual signals in a low-density distylous plant. Oecologia 136(4):571–573

    Article  PubMed  Google Scholar 

  • Brody AK, Mitchell RJ (1997) Effects of experimental manipulation of inflorescence size on pollination and pre-dispersal seed predation in the hummingbird-pollinated plant Ipomopsis aggregata. Oecologia 110(1):86–93

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Abrahamson WG, Packer RA, Way PA (1995) The role of natural-enemy escape in a gallmaker host-plant shift. Oecologia 104(1):52–60

    Article  CAS  PubMed  Google Scholar 

  • Burgess KH (1991) Florivory: the ecology of flower feeding insects and their host plants. PhD dissertation, Harvard University

  • Caldwell E, Read J, Sanson GD (2015) Which leaf mechanical traits correlate with insect herbivory among feeding guilds? Ann Bot 117(2):349–361

    PubMed  PubMed Central  Google Scholar 

  • Chandra S, Williams G (1983) Frequency-dependent selection in the grazing behaviour of the desert locust Schistocerca gregaria. Ecol Entomol 8(1):13–21

    Article  Google Scholar 

  • Chesson PL (1984) Variable predators and switching behaviour. Theor Popul Biol 26(1):1–26

    Article  Google Scholar 

  • Cohen J (1962) The statistical power of abnormal–social psychological research: a review. J Abnorm Soc Psychol 65:145–153

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioural sciences, 2nd edn. Erlbaum, Hillsdale

    Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, van der Heidjden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51(4):335–380

    Article  Google Scholar 

  • Cottam DA (1985) Frequency-dependent grazing by slugs and grasshoppers. J Ecol 73(3):925–933

    Article  Google Scholar 

  • Cunningham SA (1995) Ecological constraints on fruit initiation by Calyptrogyne ghiesberghtiana (Arecaceae): Floral herbivory, pollen availability, and visitation by pollinating bats. Am J Bot 82(12):1527–1536

    Article  Google Scholar 

  • Fagerstrom T, Larsson S, Tenow O (1987) On optimal defence in plants. Funct Ecol 1(2):73–81

    Article  Google Scholar 

  • Gerchman Y, Dodek I, Petichov R, Yerushalmi Y, Lerner A, Keasar T (2012) Beyond pollinator attraction: extra-floral displays deter herbivores in a Mediterranean annual plant. Evol Ecol 26(3):499–512

    Article  Google Scholar 

  • Hambäck PA, Beckerman AP (2003) Herbivory and plant resource competition: a review of two interacting interactions. Oikos 101(1):26–37

    Article  Google Scholar 

  • Held DW, Potter DA (2004) Floral affinity and benefits of dietary mixing with flowers for a polyphagous scarab, Popillia japonica Newman. Oecologia 140(2):312–320

    Article  PubMed  Google Scholar 

  • Herrera J (1997) The role of coloured accessory bracts in the reproductive biology of Lavandula stoechas. Ecology 78(2):494–504

    Article  Google Scholar 

  • Higginson AD, Gilbert FS, Reader T, Barnard CJ (2007) Reduction of visitation rates by honeybees (Apis mellifera) to individual inflorescences of lavender (Lavandula stoechas) upon removal of coloured accessory bracts (Hymenoptera: Apidae). Entomol Gener 29:165–178

    Article  Google Scholar 

  • Higginson AD, Speed MP, Ruxton GD (2015) Florivory as an opportunity benefit of aposematism. Am Nat 186(6):728–741

    Article  PubMed  Google Scholar 

  • Keasar T, Sadeh A, Gerchman T, Shmida A (2009) The signalling function of an extra-floral display: what selects for signal development? Oikos 118(11):1752–1759

    Article  Google Scholar 

  • Landa K, Rabinowitz D (1983) Relative preference of Arphia sulphurea (Orthoptera: Acrididae) for sparse and common prairie grasses. Ecology 64(2):392–395

    Article  Google Scholar 

  • McCall AC, Fordyce JA (2010) Can optimal defence theory be used to predict the distribution of plant chemical defences? J Ecol 98(5):985–992

    Article  Google Scholar 

  • McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9(12):1351–1365

    Article  PubMed  Google Scholar 

  • Merwin AC, Parrella MP (2014) Preference induction and the benefits of floral resources for a facultative florivore. Ecol Entomol 39(4):405–411

    Article  Google Scholar 

  • Murdoch WW (1969) Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol monogr 39(4):335–354

    Article  Google Scholar 

  • Otway SJ, Hector A, Lawton JH (2005) Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J Anim Ecol 74(2):234–240

    Article  Google Scholar 

  • Pavia H, Toth GB, Åberg P (2002) Optimal defence theory: elasticity analysis as a tool to predict intraplant variation in defenses. Ecology 83(4):891–897

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Vendramini F, Cornelissen JH, Gurvich DE, Cabido M (2003) Leaf traits and herbivore selection in the field and in cafeteria experiments. Aust Ecol 28(6):642–650

    Article  Google Scholar 

  • R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rhainds M, English-Loeb G (2003) Testing the resource concentration hypothesis with tarnished plant bug on strawberry: density of hosts and patch size influence the interaction between abundance of nymphs and bout of damage. Ecol Entomol 28:348–358

    Article  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43(1):95–124

    Article  Google Scholar 

  • Sato Y, Kawagoe T, Sawada Y, Hirai MY, Kudoh H (2014) Frequency-dependent herbivory by a leaf beetle, Phaedon brassicae, on hairy and glabrous plants of Arabidopsis halleri subsp. gemmifera. Evol Ecol 28(3):545–559

    Article  Google Scholar 

  • Schaal BA (1978) Density dependent foraging on Liatris pycnostachya. Evolution 32(2):452–454

    Article  PubMed  Google Scholar 

  • Schädler M, Jung G, Auge H, Brandl R (2003) Palatability, decomposition and insect herbivory: patterns in a successional old-field plant community. Oikos 103(1):121–132

    Article  Google Scholar 

  • Sherratt TN, Harvey IF (1993) Frequency-dependent food selection by arthropods: a review. Biol J Lin Soc 48(2):167–186

    Article  Google Scholar 

  • Sutter L, Albrecht M (2016) Synergistic interactions of ecosystem services: florivorous pest control boosts crop yield increase through insect pollination. Proc R Soc B 283(1824):2015–2529

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Kawata M (2013) A comprehensive test for negative frequency-dependent selection. Popul Ecol 55(3):499–509

    Article  Google Scholar 

  • Tan MK (2012) Orthoptera in the Bukit Timah and Central Catchment Nature Reserves (Part 1): suborder Caelifera. Raffles Museum of Biodiversity Research, National University Singapore, Singapore

    Google Scholar 

  • Tan MK, Tan HTW (2017) Between florivory and herbivory: Inefficacy of decision-making by generalist floriphilic katydids. Ecol Entomol 42(2):137–144

    Article  Google Scholar 

  • Tan MK, Tan HTW (2018) Asterid ray floret traits predict the likelihood of florivory by the polyphagous katydid, Phaneroptera brevis (Orthoptera: Phaneropterinae). J Econ Entomol 111(5):2172–2181

    Article  PubMed  Google Scholar 

  • Tan MK, Artchawakom T, Wahab RA, Lee C-Y, Belabut DM, Tan HTW (2017a) Overlooked flower visiting Orthoptera in Southeast Asia. J Orthop Res 26(2):143–153

    Article  Google Scholar 

  • Tan MK, Leem CJM, Tan HTW (2017b) High floral resource density leads to neural constraint in the generalist, floriphilic katydid, Phaneroptera brevis (Orthoptera: Phaneropterinae). Ecol Entomol 42(5):535–544

    Article  Google Scholar 

  • Teixido AL, Méndez M, Valladares F (2011) Flower size and longevity influence florivory in the large-flowered shrub Cistus ladanifer. Acta Oecol 37(5):418–421

    Article  Google Scholar 

  • Thompson JN (1983) Selection pressures on phytophagous insects feeding on small host plants. Oikos 40(3):438–444

    Article  Google Scholar 

  • Tiambeng B, Ramirez DA, Espiritu LG (1970) Histochemical determination of pigments in the Mussaenda bract. Philipp Agric 52:547–552

    Google Scholar 

  • Umbanhowar J, Maron J, Harrison S (2003) Density-dependent foraging behaviours in a parasitoid lead to density-dependent parasitism of its host. Oecologia 137(1):123–130

    Article  PubMed  Google Scholar 

  • Underwood N, Inouye BD, Hambäck PA (2014) A conceptual framework for associational effects: when do neighbours matter and how would we know? Q Rev Biol 89(1):1–19

    Article  PubMed  Google Scholar 

  • Wardhaugh CW (2015) How many species of arthropods visit flowers? Arthropod Plant Interact 9(6):547–565

    Article  Google Scholar 

  • Wiggins NL, McArthur C, Davies NW (2006) Diet switching in a generalist mammalian folivore: fundamental to maximising intake. Oecologia 147(4):650–657

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L Roman Carrasco and Rachel SK Lee for providing constructive comments on the manuscript, the National University of Singapore Department of Biological Sciences for use of facilities in its Insectary. Permission for the collection of grasshoppers and plants was granted by the National Parks Board of Singapore and the Singapore Land Authority (Permit No. NP/RP16-002). The work of MKT was supported by the Lady Yuen Peng McNeice Graduate Fellowship of the National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Kai Tan.

Additional information

Handling Editor: Heikki Hokkanen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, M.K., Tan, H.T.W. Manipulating the frequency of intra-plant parts influences the foraging behaviour of a facultatively florivorous grasshopper. Arthropod-Plant Interactions 13, 531–539 (2019). https://doi.org/10.1007/s11829-018-9665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-018-9665-2

Keywords

Navigation