Skip to main content
Log in

Ca2+/CaM increases the necrotrophic pathogen resistance through the inhibition of a CaM-regulated dual-specificity protein phosphatase 1 in Arabidopsis

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Jasmonic acid (JA) is a phytohormone that plays a central role in plant defense against necrotrophic pathogens. JA signaling stimulates the increase of cytosolic calcium ion (Ca2+) and implicates the activity of mitogen-activated protein kinases (MPKs). We previously characterized that Ca2+/calmodulin (CaM) activates MPKs by inhibiting a CaM-regulated dual-specificity protein phosphatase1 (DsPTP1) at the biochemical level. In this study, we reported that Ca2+/CaM-mediated DsPTP1 negatively regulates the resistance to necrotrophic pathogens through the inhibition of JA-responsive MPK6. To elucidate the physiological function of inhibiting DsPTP1 activity by Ca2+/CaM, we constructed transgenic plants overexpressing DsPTP1 wild type (DsPTP1WT OX) and CaM deregulated mutant (DsPTP1K166E OX). Interestingly, the MPK6 activity was significantly reduced in DsPTP1K166E OX plants in response to JA compared to DsPTP1WT OX plants. Moreover, transcript levels of JA-responsive gene PDF1.2 and VSP1 were also highly decreased in DsPTP1K166E OX plants compared to DsPTP1WT OX plants. Furthermore, DsPTP1K166E OX plants showed more susceptibility to necrotrophic pathogens than DsPTP1WT OX plants. Conclusively, these results suggest that Ca2+/CaM activates the JA-responsive MPKs by inhibiting DsPTP1 for the resistance to the necrotrophic pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An C, Li L, Zhai Q, You Y, Deng L, Wu F, Chen R, Jiang H, Wang H, Chen Q, Li C (2017) Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proc Natl Acad Sci USA 114:E8930–E8939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JC, Bartels S, González Besteiro MA, Shahollari B, Ulm R, Peck SC (2011) Arabidopsis MAP Kinase Phosphatase 1 (AtMKP1) negatively regulates MPK6-mediated PAMP responses and resistance against bacteria. Plant J 67:258–268

    CAS  PubMed  Google Scholar 

  • Asai S, Ichikawa T, Nomura H, Kobayashi M, Kamiyoshihara Y, Mori H, Kadota Y, Zipfel C, Jones JDG, Yoshioka H (2013) The variable domain of a plant calcium-dependent protein kinase (CDPK) confers subcellular localization and substrate recognition for NADPH oxidase. J Biol Chem 288:14332–14340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ (1995) Calcium signalling and cell proliferation. BioEssays 17:491–500

    CAS  PubMed  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    CAS  PubMed  Google Scholar 

  • Bouché N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    PubMed  Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205

    CAS  PubMed  Google Scholar 

  • Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    CAS  PubMed  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci U S A 81:1991–1995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Das R, Pandey GK (2010) Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Curr Genom 11:2–13

    CAS  Google Scholar 

  • Dóczi R, Brader G, Pettkó-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H (2007) The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19:3266–3279

    PubMed  PubMed Central  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    CAS  PubMed  Google Scholar 

  • Fleming I, Fisslthaler B, Busse R (1995) Calcium signaling in endothelial cells involves activation of tyrosine kinases and leads to activation of mitogen-activated protein kinases. Circ Res 76:522–529

    CAS  PubMed  Google Scholar 

  • Furuya T, Matsuoka D, Nanmori T (2013) Phosphorylation of Arabidopsis thaliana MEKK1 via Ca2+ signaling as a part of the cold stress response. J Plant Res 126:833–840

    CAS  PubMed  Google Scholar 

  • Galletti R, Ferrari S, De Lorenzo G (2011) Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol 157:804–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han L, Li G-J, Yang K-Y, Mao G, Wang R, Liu Y, Zhang S (2010) Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J 64:114–127

    CAS  PubMed  Google Scholar 

  • He X, Wang C, Wang H, Li L, Wang C (2020) The function of MAPK cascades in response to various stresses in horticultural plants. Front Plant Sci 11:1–12

    Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427

    CAS  PubMed  Google Scholar 

  • Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the INDUCER OF CBF expression-C-repeat binding factor/dre binding factor1 Cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–2924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A (2018) Mitogen-activated protein kinase cascades in plant hormone signaling. Front Plant Sci 9:1–26

    Google Scholar 

  • Jeong YJ (2020) Putative E3 ligases as candidates controlling Brassinosteroid Insensitive 2 (BIN2) kinase in Arabidopsis. Plant Biotechnol Rep 14:703–712

    Google Scholar 

  • Jiang L, Chen Y, Luo L, Peck SC (2018) Central roles and regulatory mechanisms of dual-specificity MAPK phosphatases in developmental and stress signaling. Front Plant Sci 9:1697

    PubMed  PubMed Central  Google Scholar 

  • Kim MC, Lee SH, Kim JK, Chun HJ, Choi MS, Chung WS, Moon BC, Kang CH, Park CY, Yoo JH, Kang YH, Koo SC, Koo YD, Jung JC, Kim ST, Schulze-Lefert P, Lee SY, Cho MJ (2002) Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice mlo homologue. J Biol Chem 277:19304–19314

    CAS  PubMed  Google Scholar 

  • Kim SH, Kim HS, Bahk S, An J, Yoo Y, Kim JY, Chung WS (2017) Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic Acids Res 45:6613–6627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KE, Nguyen NT, Kim SH, Bahk S, Cheong MS, Lee, KO, Hong, CH, Chung WS (2021) Ca2+/Calmodulin activates a MAP kinase through the inhibition of a protein phosphatase (DsPTP1) in Arabidopsis. J. Plant Biol. https://doi.org/10.1007/s12374-021-09338-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Ellis BE (2007) Arabidopsis MAPK phosphatase 2 (MKP2) positively regulates oxidative stress tolerance and inactivates the MPK3 and MPK6 MAPKs. J Biol Chem 282:25020–25029

    CAS  PubMed  Google Scholar 

  • Lee Y, Kim YJ, Kim MH, Kwak JM (2016) MAPK cascades in guard cell signal transduction. Front Plant Sci 7:1–8

    Google Scholar 

  • Lee JS, Wang S, Sritubtim S, Chen JG, Ellis BE (2009) Arabidopsis mitogen-activated protein kinase MPK12 interacts with the MAPK phosphatase IBR5 and regulates auxin signaling. Plant J Mar 57: 975–985

  • Lumbreras V, Vilela B, Irar S, Solé M, Capellades M, Valls M, Coca M, Pagès M (2010) MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. Plant J 63:1017–1030

    CAS  PubMed  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    CAS  PubMed  Google Scholar 

  • McCormack E, Tsai YC, Braam J (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10:383–389

    CAS  PubMed  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:267–294

    CAS  PubMed  Google Scholar 

  • Montillet JL, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M, Garcia AV, Douki T, Bigeard J, Laurière C, Chevalier A, Castresana C, Hirt H (2013) An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol 11:e1001513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris PC (2001) MAP kinase signal transduction pathways in plants. New Phytol 151:67–89

    CAS  PubMed  Google Scholar 

  • Okada K, Abe H, Arimura GI (2015) Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol 56:16–27

    CAS  PubMed  Google Scholar 

  • Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012) Mitogen-activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13:7828–7853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey D, Rajendran SRCK, Gaur M, Sajeesh PK, Kumar A (2016) Plant defense signaling and responses against necrotrophic fungal pathogens. J Plant Growth Regul 35:1159–1174

    CAS  Google Scholar 

  • Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930

    CAS  PubMed  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Bossche RV, Sewell J, Gil E, García-Casado G, Witters E, Inzé D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samuel MA, Miles GP, Ellis BE (2000) Ozone treatment rapidly activates MAP kinase signalling in plants. Plant J 22:367–376

    CAS  PubMed  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santella L (1998) The role of calcium in the cell cycle: Facts and hypotheses. Biochem Biophys Res Commun 244:317–324

    CAS  PubMed  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M (2012) Plant organellar calcium signalling: An emerging field. J Exp Bot 63:1525–1542

    CAS  PubMed  Google Scholar 

  • Sun Q-P, Guo Y, Sun Y, Sun D-Y, Wang X-J (2006) Influx of extracellular Ca2+ involved in jasmonic-acid-induced elevation of [Ca2+]cyt and JR1 expression in Arabidopsis thaliana. J Plant Res 119:343–350

    CAS  PubMed  Google Scholar 

  • Sun JQ, Jiang HL, Li CY (2011) Systemin/jasmonate-mediated systemic defense signaling in tomato. Mol Plant 4:607–615

    CAS  PubMed  Google Scholar 

  • Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozakia K (2007) The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K (2011) Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell 41:649–660

    CAS  PubMed  Google Scholar 

  • Tang W, Thompson WA (2020) Role of the Arabidopsis calcineurin B-like protein-interacting protein kinase CIPK21 in plant cold stress tolerance. Plant Biotechnol Rep 14:275–291

    Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665

    CAS  PubMed  Google Scholar 

  • Thireault C, Shyu C, Yoshida Y, St Aubin B, Campos ML, Howe GA (2015) Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis. Plant J 82:669–679

    CAS  PubMed  Google Scholar 

  • Ulm R, Ichimura K, Mizoguchi T, Peck SC, Zhu T, Wang X, Shinozaki K, Paszkowski J (2002) Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J 21:6483–6493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19:63–73

    PubMed  PubMed Central  Google Scholar 

  • Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW (2010) A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem 285:7119–7126

    CAS  PubMed  Google Scholar 

  • Yoo JH, Cheong MS, Park CY, Moon BC, Kim MC, Kang YH, Park HC, Choi MS, Lee JH, Jung WY, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ (2004) Regulation of the Dual Specificity Protein Phosphatase, DsPTP1, through Interactions with Calmodulin. J Biol Chem 279: 848–858

    CAS  PubMed  Google Scholar 

  • Zhang F, Yao J, Ke J, Zhang L, Lam VQ, Xin XF, Zhou XE, Chen J, Brunzelle J, Griffin PR, Zhou M, Xu HE, Melcher K, He SY (2015) Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525:269–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhang F, Melotto M, Yao J, He SY (2017) Jasmonate signaling and manipulation by pathogens and insects. J Exp Bot 68:1371–1385

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Cooperative Research Program for Agriculture Science and Technology Development (No. PJ01590901) funded by the Rural Development Administration, Republic of Korea and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Nos. 2021R1I1A1A01040693 and 2020R1A6A1A03044344), and partly supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106.02-2017.09.

Author information

Authors and Affiliations

Authors

Contributions

S.H.K., N.T.N., and W.S.C. designed, planned, and organized the experiments. S.H.K., N.T.N., K.E.K., S.B., and M.G.K. performed biochemical experiments in this study. S.H.K., N.T.N., X.C.N., J.C.H., and W.S.C. analyzed data and wrote the manuscript with feedback from all authors.

Corresponding author

Correspondence to Woo Sik Chung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 85 KB)

Supplementary file2 (PDF 232 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.T., Kim, S.H., Kim, K.E. et al. Ca2+/CaM increases the necrotrophic pathogen resistance through the inhibition of a CaM-regulated dual-specificity protein phosphatase 1 in Arabidopsis. Plant Biotechnol Rep 16, 71–78 (2022). https://doi.org/10.1007/s11816-021-00729-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-021-00729-7

Keywords

Navigation