Skip to main content
Log in

Comparative proteomic analysis of host responses to Plasmodiophora brassicae infection in susceptible and resistant Brassica oleracea

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Clubroot disease, caused by Plasmodiophora brassicae, is one of the most devastating diseases affecting members of the Brassicaceae family. It is difficult to control by chemical or cultural means, and the molecular mechanisms underlying interactions with Brassica oleracea (cabbage) remain poorly understood. Herein, we used a proteomic approach to investigate B. oleracea–P. brassicae interactions during the early phases of infection in above-ground tissues. Proteins were isolated from the aerial parts of clubroot-susceptible (CT-18) and -resistant (YCR) cabbage cultivars at 5 days after inoculation with P. brassicae or buffer (mock) and resolved by sodium dodecyl sulphate–polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis. A total of 24 differentially modulated proteins were identified in at least two biological replicates, and exhibited altered expression between mock and P. brassicae treatments and/or in the different cabbage cultivars. Most of the identified proteins are involved in oxidative stress, abscisic acid (ABA) metabolism, glucose-mediated signalling and responses to stimuli. Resistant YCR plants harboured an increased abundance of ABA-responsive protein, fructose-bisphosphate aldolase and glucose sensor interaction protein compared with CT-18 plants in both mock and P. brassicae-treated samples, suggesting that they may mediate basal defences against P. brassicae infection in YCR. Specifically, we observed that susceptible (CT-18) plants expressed higher levels of cobalamin-independent methionine synthase than YCR, which may enhance susceptibility of the host. Further investigation of the identified proteins will likely facilitate the identification of key molecular determinants, potentially improving clubroot disease resistance in future cabbage crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal GK, Yonekura M, Iwahashi Y, Iwahashi H, Rakwal R (2005) System, trends and perspectives of proteomics in dicot plants. Part III: Unraveling the proteomes influenced by the environment, and at the levels of function and genetic relationships. J Chromatogr B Anal Technol Biomed Life Sci 815:137–145

    Article  CAS  Google Scholar 

  • Anstead JA, Hartson SD, Thompson GA (2013) The broccoli (Brassica oleracea) phloem tissue proteome. BMC Genom 14:764

    Article  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    Article  CAS  PubMed  Google Scholar 

  • Buczacki ST, Toxopeus H, Mattusch P, Johnston TD, Dixon GR, Hobolth LA (1975) Study of physiologic specialization in Plasmodiophora brassicae: proposals for rationalization through an international approach. Trans Br Mycol Soc 65:295–303

    Article  Google Scholar 

  • Butt YKC, Lo SCL (2007) Proteomic studies on plant–pathogen interaction in compatible and incompatible systems. Proteomics 4:141–156

    CAS  Google Scholar 

  • Cao T, Tewari J, Strelkov SE (2007) Molecular detection of Plasmodiophora brassicae, causal agent of clubroot of crucifers, in plant and soil. Plant Dis 91:80–87

    Article  CAS  PubMed  Google Scholar 

  • Chiang BY, Chiang MS, Grant WF, Crete R (1980) Transfer of resistance to race 2 of Plasmodiophora brassicae from Brassica napus to cabbage (B. oleracea spp. capitata). IV. A resistant 18-chromosome B1 plant and its B2 progenies. Euphytica 29:47–55

    Article  Google Scholar 

  • Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    Article  CAS  PubMed  Google Scholar 

  • Ciuzan O, Hancock J, Pamfil D, Wilson I, Ladomery M (2015) The evolutionarily conserved multifunctional glycine-rich RNA-binding proteins play key roles in development and stress adaptation. Physiol Plant 153:1–11

    Article  CAS  PubMed  Google Scholar 

  • Dalton DA, Baird LM, Langeberg L, Taugher CY, Anyan WR, Vance CP, Sarath G (1993) Subcellular localization of oxygen defense enzymes in soybean (Glycine max [L.] Merr.) root nodules. Plant Physiol 102:481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayan FE, Ferreira D, Wang YH, Khan IA, McInroy JA, Pan Z (2008) A pathogenic fungi diphenyl ether phytotoxin targets plant enoyl (acyl carrier protein) reductase. Plant Physiol 147:1062–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devos S, Laukens K, Deckers P, Van Der Straeten D, Beeckman T, Inze D, Van Onckelen H, Witters E, Prinsen E (2006) A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol Plant Microbe Interact 19:1431–1443

    Article  CAS  PubMed  Google Scholar 

  • Diederichsen E, Frauen M, Linders EGA, Hatakeyama K, Hirai M (2009) Status and perspectives of clubroot resistance breeding in crucifer crops. J Plant Growth Regul 28:265–281

    Article  CAS  Google Scholar 

  • Dixon GR (2009) The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. J Plant Growth Regul 28:194–202

    Article  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Eckermann C, Eichel J, Schroder J (2000) Plant methionine synthase: new insights into properties and expression. Biol Chem 381:695–703

    Article  CAS  PubMed  Google Scholar 

  • Hwang SF, Strelkov SE, Feng J, Gossen BD, Howard RJ (2012) Plasmodiophora brassicae: a review of an emerging pathogen of the Canadian canola (Brassica napus) crop. Mol Plant Pathol 13:105–113

    Article  CAS  PubMed  Google Scholar 

  • Jones DR, Ingram DS, Dixon GR (1982) Characterization of isolates derived from single resting spores of Plasmodiophora brassicae and studies of their interaction. Plant Pathol 31:239–246

    Article  Google Scholar 

  • Kawalleck P, Plesch G, Hahlbrock K, Somssich IE (1992) Induction by fungal elicitor of S-adenosyl-l-methionine synthetase and S-adenosyl-l-homocysteine hydrolase mRNAs in cultured cells and leaves of Petroselinum crispum. Proc Natl Acad Sci USA 89:4713–4717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim ST, Cho KS, Jang YS, Kang KY (2001) Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis 22:2103–2109

    Article  CAS  PubMed  Google Scholar 

  • Kim ST, Kang SY, Wang Y, Kim SG, du Hwang H, Kang KY (2008) Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 8:3577–3587

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Jo EJ, Choi YH, Jang KS, Choi GJ (2016) Pathotype classification of Plasmodiophora brassicae isolates using clubroot-resistant cultivars of Chinese cabbage. Plant Pathol J 32:423–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobelt P, Siemens J, Sacristan MD (2000) Histological characterisation of the incompatible interaction between Arabidopsis thaliana and the obligate biotrophic pathogen Plasmodiophora brassicae. Mycol Res 104:220

    Article  Google Scholar 

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185

    Article  CAS  PubMed  Google Scholar 

  • Kuginuki Y, Yoshikawa H, Hirai M (1999) Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot resistant cultivars of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Eur J Plant Pathol 105:327–332

    Article  Google Scholar 

  • Kwon YS, Ryu CM, Lee S, Park HB, Han KS, Lee JH, Lee K, Chung WS, Jeong MJ, Kim HK, Bae DW (2010) Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232:1355–1370

    Article  CAS  PubMed  Google Scholar 

  • Laloi C, Mestres-Ortega D, Marco Y, Meyer Y, Reichheld JP (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol 134:1006–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MY, Shin KH, Kim YK, Suh JY, Gu YY, Kim MR, Hur YS, Son O, Kim JS, Song E, Lee MS, Nam KH, Hwang KH, Sung MK, Kim HJ, Chun JY, Park M, Ahn TI, Hong CB, Lee SH, Park HJ, Park JS, Verma DP, Cheon CI (2005) Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots. Plant Physiol 139:1881–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Kim YC, Kim SY, Lee IJ, Choi D, Paek KH, Cho HS, Kweon SY, Park JM (2012) A novel gibberellin 2-oxidase gene CaGA2ox1 in pepper is specifically induced by incompatible plant pathogens. Plant Biotechnol Rep 6:381–390

    Article  Google Scholar 

  • Lherminier J, Elmayan T, Fromentin J, Elaraqui KT, Vesa S, Morel J, Verrier JL, Cailleteau B, Blein JP, Simon-Plas F (2009) NADPH oxidase-mediated reactive oxygen species production: subcellular localization and reassessment of its role in plant defense. Mol Plant Microbe Interact MPMI 22:868–881

    Article  CAS  PubMed  Google Scholar 

  • Li JP, Yan L, Shi YX, Xie XW, Chai AL, Li BJ (2013) Development of a real-time PCR assay for Plasmodiophora brassicae and its detection in soil samples. J Integr Agric 12:1799–1806

    Article  Google Scholar 

  • Li S, Ehrhardt DW, Rhee SY (2006) Systematic analysis of Arabidopsis organelles and a protein localization database for facilitating fluorescent tagging of full-length Arabidopsis proteins. Plant Physiol 141:527–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Hunter L (2005) Go molecular function terms are predictive of subcellular localization. In: Pacific symposium on biocomputing, pp 151–161

  • Massengo-Tiasse RP, Cronan JE (2009) Diversity in enoyl–acyl carrier protein reductases. Cell Mol Life Sci CMLS 66:1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Mathesius U (2009) Comparative proteomic studies of root–microbe interactions. J Proteom 72:353–366

    Article  CAS  Google Scholar 

  • Matsumoto E, Yasui C, Ohi M, Tsukada M (1998) Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis). Euphytica 104:79–86

    Article  CAS  Google Scholar 

  • Mehta A, Brasileiro AC, Souza DS, Romano E, Campos MA, Grossi-de-Sá MF, Silva MS, Franco OL, Fragoso RR, Bevitori R, Rocha TL (2008) Plant–pathogen interactions: what is proteomics telling us? FEBS J 275:3731–3746

    Article  CAS  PubMed  Google Scholar 

  • Mokriakova MV, Pogorelko GV, Bruskin SA, Piruzian ES, Abdeeva IA (2014) The role of peptidyl–prolyl cis/trans isomerase genes of Arabidopsis thaliana in plant defense during the course of Xanthomonas campestris infection. Genetika 50:157–166

    CAS  PubMed  Google Scholar 

  • Plener L, Boistard P, Gonzalez A, Boucher C, Genin S (2012) Metabolic adaptation of Ralstonia solanacearum during plant infection: a methionine biosynthesis case study. PLoS ONE 7:e36877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quirino BF, Candido ES, Campos PF, Franco OL, Krüger RH (2010) Proteomic approaches to study plant–pathogen interactions. Phytochemistry 71:351–362

    Article  CAS  PubMed  Google Scholar 

  • Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95:7805–7812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravanel S, Block MA, Rippert P, Jabrin S, Curien G, Rébeillé F, Douce R (2004) Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem 279:22548–22557

    Article  CAS  PubMed  Google Scholar 

  • Rody HVS, Oliveira LOD (2018) Evolutionary history of the cobalamin-independent methionine synthase gene family across the land plants. Mol Phylogenet Evol 120:33–42

    Article  CAS  PubMed  Google Scholar 

  • Sharma AD, Wajapeyee N, Yadav V, Singh P (2008) Stress-induced changes in peptidyl–prolyl cistrans isomerase activity of Sorghum bicolor seedlings. Biol Plant 47:367–371

    Google Scholar 

  • Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmulling T, Parniske M, Ludwig-Muller J (2006) Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe Interact MPMI 19:480–494

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Wang C, Yang B, Wu F, Hao X, Liang W, Niu F, Yan J, Zhang H, Wang B, Deyholos MK, Jiang YQ (2014) Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.). J Exp Bot 65:2171–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viaud MC, Balhadère PV, Talbot NJ (2002) A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell 14:917–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent D, Tan KC, Cassidy L, Solomon PS, Oliver RP (2012) Proteomic techniques for plant–fungal interactions. In: Bolton MD, Thomma BP (eds) Plant fungal pathogens. Humana Press, Totowa, pp 75–96

    Chapter  Google Scholar 

  • Wallenhammar AC, Arwidsson O (2001) Detection of Plasmodiophora brassicae by PCR in naturally infested soils. Eur J Plant Pathol 107:313–321

    Article  CAS  Google Scholar 

  • Yao Y, Sun H, Xu F, Zhang X, Liu S (2011) Comparative proteome analysis of metabolic changes by low phosphorus stress in two Brassica napus genotypes. Planta 233:523–537

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa H (1993) Studies on breeding of clubroot resistance in cole (Cruciferae) crop. Bull Natl Res Inst Veg Ornam Plants Tea Jpn Ser A 7:1–165

    Google Scholar 

Download references

Acknowledgements

This work was supported by the KRIBB Initiative Program funded by the Ministry of Science and ICT (Grant no. NRF-2017R1A2B4012820).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Mee Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, J.Y., Kim, S.T., Choi, G.J. et al. Comparative proteomic analysis of host responses to Plasmodiophora brassicae infection in susceptible and resistant Brassica oleracea. Plant Biotechnol Rep 14, 263–274 (2020). https://doi.org/10.1007/s11816-020-00596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-020-00596-8

Keywords

Navigation