Skip to main content

Advertisement

Log in

Perspective: functional genomics towards new biotechnology in medicinal plants

Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The secret of chemical diversity and function of specialized metabolites in medicinal plants will be unveiled by study of functional genomics at an unprecedentedly rapid rate in the coming years. This is mostly ascribed to the remarkable advancement in the high-throughput DNA sequencing together with other omics technologies such as metabolomics, in particular, due to drastic reduction in the cost of acquiring, storing and analyzing massive omics datasets. Once the genes involved in a biosynthetic pathway of specialized compounds in plants are elucidated, synthetic biology or genome editing can be applied to produce the target compounds in an engineered organism or to manipulate the pathway in planta. Coupled with these advancements in pathway elucidation approaches, modern plant biotechnology strategies are bound to significantly contribute to the sustainable development goals set by United Nations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, Kanaya S (2012) KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol 53:e1

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Genome I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Asada K, Salim V, Masada-Atsumi S, Edmunds E, Nagatoshi M, Terasaka K, Mizukami H, De Luca V (2013) A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar periwinkle. Plant Cell 25:4123–4134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Brown S, Clastre M, Courdavault V, O’Connor SE (2015) De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci 112:3205–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunsupa S, Katayama K, Ikeura E, Oikawa A, Toyooka K, Saito K, Yamazaki M (2012) Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in Leguminosae. Plant Cell 24:1202–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunsupa S, Hanada K, Maruyama A, Aoyagi K, Komatsu K, Ueno H, Yamashita M, Sasaki R, Oikawa A, Saito K, Yamazaki M (2016) Molecular evolution and functional characterization of a bifunctional decarboxylase involved in lycopodium alkaloid biosynthesis. Plant Physiol 171:2432–2444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Champagne A, Rischer H, Oksman-Caldentey K-M, Boutry M (2012) In-depth proteome mining of cultured Catharanthus roseus cells identifies candidate proteins involved in the synthesis and transport of secondary metabolites. Proteomics 12:3536–3547

    Article  CAS  PubMed  Google Scholar 

  • Desgagné-Penix I, Khan MF, Schriemer DC, Cram D, Nowak J, Facchini PJ (2010) Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biol 10:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Strack D (2003) Phytochemistry meets genome analysis, and beyond. Phytochemistry 62:815–816

    Article  CAS  PubMed  Google Scholar 

  • Fukushima A, Nakamura M, Suzuki H, Saito K, Yamazaki M (2015) High-throughput sequencing and de novo assembly of red and green forms of the Perilla frutescens var. crispa Transcriptome. PLoS One 10:e0129154

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukushima A, Nakamura M, Suzuki H, Yamazaki M, Knoch E, Mori T, Umemoto N, Morita M, Hirai G, Sodeoka M, Saito K (2016) Comparative characterization of the leaf tissue of Physalis alkekengi and Physalis peruviana using RNA-seq and metabolite profiling. Front Plant Sci 7:1883

    Article  PubMed  PubMed Central  Google Scholar 

  • Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD (2015) Complete biosynthesis of opioids in yeast. Science 349:1095–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O’Connor SE (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492:138–142

    Article  CAS  PubMed  Google Scholar 

  • Góngora-Castillo E, Childs KL, Fedewa G, Hamilton JP, Liscombe DK, Magallanes-Lundback M, Mandadi KK, Nims E, Runguphan W, Vaillancourt B, Varbanova-Herde M, DellaPenna D, McKnight TD, O’Connor S, Buell CR (2012) Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant Species. PLoS One 7:e52506

    Article  PubMed  PubMed Central  Google Scholar 

  • Han R, Takahashi H, Nakamura M, Bunsupa S, Yoshimoto N, Yamamoto H, Suzuki H, Shibata D, Yamazaki M, Saito K (2015a) Transcriptome analysis of nine tissues to discover genes involved in the biosynthesis of active ingredients in Sophora flavescens. Biol Pharm Bull 38:876–883

    Article  CAS  PubMed  Google Scholar 

  • Han R, Takahashi H, Nakamura M, Yoshimoto N, Suzuki H, Shibata D, Yamazaki M, Saito K (2015b) Transcriptomic landscape of Pueraria lobata demonstrates potential for phytochemical study. Front Plant Sci 6:426

    PubMed  PubMed Central  Google Scholar 

  • Han R, Rai A, Nakamura M, Suzuki H, Takahashi H, Yamazaki M, Saito K (2016) Chap. 2—de novo deep transcriptome analysis of medicinal plants for gene discovery in biosynthesis of plant natural products. In: O’Connor SE (ed) Methods in enzymology. vol 576. Elsevier, pp 19–45

    Google Scholar 

  • Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nature Rev Drug Disco 14:111–129

    Article  CAS  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nature Rev Mol Cell Biol 14:49–55

    Article  CAS  Google Scholar 

  • Kellner F, Kim J, Clavijo BJ, Hamilton JP, Childs KL, Vaillancourt B, Cepela J, Habermann M, Steuernagel B, Clissold L, McLay K, Buell CR, O’Connor SE (2015) Genome-guided investigation of plant natural product biosynthesis. Plant J 82:680–692

    Article  CAS  PubMed  Google Scholar 

  • Kew R (2016) The State of the World’s Plants Report—2016. In: Royal Botanical Gradens, Kew

  • Li C, Zhu Y, Guo X, Sun C, Luo H, Song J, Li Y, Wang L, Qian J, Chen S (2013) Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genom 14:245

    Article  CAS  Google Scholar 

  • Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Bioscience 7:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, Van Der Krol S, Lugan R, Ilc T (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606

    PubMed  PubMed Central  Google Scholar 

  • Mishra R, Zhao K (2018) Genome editing technologies and their applications in crop improvement. Plant Biotech Rep. https://doi.org/10.1007/s11816-018-0472-0

    Google Scholar 

  • Mochida K, Sakurai T, Seki H, Yoshida T, Takahagi K, Sawai S, Uchiyama H, Muranaka T, Saito K (2017) Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J 89:181–194

    Article  CAS  PubMed  Google Scholar 

  • Moses T, Pollier J, Almagro L, Buyst D, Van Montagu M, Pedreño MA, Martins JC, Thevelein JM, Goossens A (2014) Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum. Proc Natl Acad Sci 111:1634–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata J, Roepke J, Gordon H, De Luca V (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20:524–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa A, Matsumura E, Koyanagi T, Katayama T, Kawano N, Yoshimatsu K, Yamamoto K, Kumagai H, Sato F, Minami H (2016) Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat Commun 7:10390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara K, Shimatani Z, Kondo A (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353:aaf8729

    Article  PubMed  Google Scholar 

  • Nonaka S, Arai C, Takayama M, Matsukura C, Ezura H (2017) Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci Rep 7:7057

    Article  PubMed  PubMed Central  Google Scholar 

  • Okazaki Y, Saito K (2012) Recent advances of metabolomics in plant biotechnology. Plant Biotech Rep 6:1–15

    Article  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell M, Tai A, Main A, Eng D (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  CAS  PubMed  Google Scholar 

  • Pathak S, Lakhwani D, Gupta P, Mishra BK, Shukla S, Asif MH, Trivedi PK (2013) Comparative transcriptome analysis using high papaverine mutant of Papaver somniferum reveals pathway and uncharacterized steps of papaverine biosynthesis. PloS One 8:e65622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Current Opin Plant Biol 36:1–8

    Article  CAS  Google Scholar 

  • Qu Y, Easson ML, Froese J, Simionescu R, Hudlicky T, De Luca V (2015) Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci 112:6224–6229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai A, Nakamura M, Takahashi H, Suzuki H, Saito K, Yamazaki M (2016a) High-throughput sequencing and de novo transcriptome assembly of Swertia japonica to identify genes involved in the biosynthesis of therapeutic metabolites. Plant Cell Rep 35:2091–2111

    Article  CAS  PubMed  Google Scholar 

  • Rai A, Yamazaki M, Takahashi H, Nakamura M, Kojoma M, Suzuki H, Saito K (2016b) RNA-seq transcriptome analysis of Panax japonicus, and its comparison with other Panax species to identify potential genes involved in the saponins biosynthesis. Front Plant Sci 7:481

    PubMed  PubMed Central  Google Scholar 

  • Rai A, Kamochi H, Suzuki H, Nakamura M, Takahashi H, Hatada T, Saito K, Yamazaki M (2017a) De novo transcriptome assembly and characterization of nine tissues of Lonicera japonica to identify potential candidate genes involved in chlorogenic acid, luteolosides, and secoiridoid biosynthesis pathways. J Nat Med 71:1–15

    Article  CAS  PubMed  Google Scholar 

  • Rai A, Saito K, Yamazaki M (2017b) Integrated omics analysis of specialized metabolism in medicinal plants. Plant J 90:764–787

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Rai A, Kawano N, Yoshimatsu K, Takahashi H, Suzuki H, Kawahara N, Saito K, Yamazaki M (2017c) De novo RNA sequencing and expression analysis of Aconitum carmichaelii to analyze key genes involved in the biosynthesis of diterpene alkaloids. Molecules 22:2155

    Article  Google Scholar 

  • Ramilowski JA, Sawai S, Seki H, Mochida K, Yoshida T, Sakurai T, Muranaka T, Saito K, Daub CO (2013) Glycyrrhiza uralensis transcriptome landscape and study of phytochemicals. Plant Cell Physiol 54:697–710

    Article  CAS  PubMed  Google Scholar 

  • Reed J, Stephenson MJ, Miettinen K, Brouwer B, Leveau A, Brett P, Goss RJM, Goossens A, O’Connell MA, Osbourn A (2017) A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. Metab Eng 42:185–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadre R, Magallanes-Lundback M, Pradhan S, Salim V, Mesberg A, Jones AD, DellaPenna D (2016) Metabolite diversity in alkaloid biosynthesis: a multi-lane (diastereomer) highway for camptothecin synthesis in Camptotheca acuminata. Plant Cell 28:1926–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K (2013) Phytochemical genomics—a new trend. Curr Opin Plant Biol 16:373–380

    Article  CAS  PubMed  Google Scholar 

  • Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki H, Ohyama K, Sawai S, Mizutani M, Ohnishi T, Sudo H, Akashi T, Aoki T, Saito K, Muranaka T (2008) Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc Natl Acad Sci USA 105:14204–14209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki H, Sawai S, Ohyama K, Mizutani M, Ohnishi T, Sudo H, Fukushima EO, Akashi T, Aoki T, Saito K, Muranaka T (2011) Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. Plant Cell 23:4112–4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Kaur R, Singh A (2017) Recent advances in CRISPR/Cas mediated genome editing for crop improvement. Plant Biotech Rep 11:193–207

    Article  Google Scholar 

  • Sprink T, Metje J, Hartung F (2015) Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr Opin Biotech 32:47–53

    Article  CAS  PubMed  Google Scholar 

  • Sumner LW, Lei Z, Nikolau BJ, Saito K (2015) Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Nat Prod Rep 32:212–229

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Jadaun JS, Chandra M, Sangwan NS (2016) Medicinal plant transcriptomes: the new gateways for accelerated understanding of plant secondary metabolism. Plant Genet Resour 14:256–269

    Article  CAS  Google Scholar 

  • van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12:R102

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Moerkercke A, Fabris M, Pollier J, Baart GJE, Rombauts S, Hasnain G, Rischer H, Memelink J, Oksman-Caldentey K-M, Goossens A (2013) CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data. Plant Cell Physiol 54:673–685

    Article  PubMed  Google Scholar 

  • van de Wiel CCM, Schaart JG, Lotz LAP, Smulders MJM (2017) New traits in crops produced by genome editing techniques based on deletions. Plant Biotech Rep 11:1–8

    Article  Google Scholar 

  • Verma M, Ghangal R, Sharma R, Sinha AK, Jain M (2014) Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling. PLoS One 9:e103583

    Article  PubMed  PubMed Central  Google Scholar 

  • Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B, Breen J, Morris AG, Alt KW, Caramelli D, Dresely V, Farrell M, Farrer AG, Francken M, Gully N, Haak W, Hardy K, Harvati K, Held P, Holmes EC, Kaidonis J, Lalueza-Fox C, de la Rasilla M, Rosas A, Semal P, Soltysiak A, Townsend G, Usai D, Wahl J, Huson DH, Dobney K, Cooper A (2017) Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544:357–361

    Article  CAS  PubMed  Google Scholar 

  • Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson TR, Li Y, Meade F, Teodor R, Vaistij FE, Walker C, Bowser TA, Graham IA (2012) A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 336:1704–1708

    Article  CAS  PubMed  Google Scholar 

  • Xing H-L, Dong L, Wang Z-P, Zhang H-Y, Han C-Y, Liu B, Wang X-C, Chen Q-J (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Chu Y, Liao B, Xiao S, Yin Q, Bai R, Su H, Dong L, Li X, Qian J, Zhang J, Zhang Y, Zhang X, Wu M, Zhang J, Li G, Zhang L, Chang Z, Zhang Y, Jia Z, Liu Z, Afreh D, Nahurira R, Zhang L, Cheng R, Zhu Y, Zhu G, Rao W, Zhou C, Qiao L, Huang Z, Cheng YC, Chen S (2017) Panax ginseng genome examination for ginsenoside biosynthesis. Gigascience. 6:1–15. https://doi.org/10.1093/gigascience/gix093

    Google Scholar 

  • Yamazaki M, Mochida K, Asano T, Nakabayashi R, Chiba M, Udomson N, Yamazaki Y, Goodenowe DB, Sankawa U, Yoshida T, Toyoda A, Totoki Y, Sakaki Y, Góngora-Castillo E, Buell CR, Sakurai T, Saito K (2013) Coupling deep transcriptome analysis with untargeted metabolic profiling in Ophiorrhiza pumila to further the understanding of the biosynthesis of the anti-cancer alkaloid camptothecin and anthraquinones. Plant Cell Physiol 54:686–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto N, Onuma M, Mizuno S, Sugino Y, Nakabayashi R, Imai S, Tsuneyoshi T, Sumi S, Saito K (2015a) Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic. Plant J 83:941–951

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto N, Yabe A, Sugino Y, Murakami S, Sai-ngam N, Sumi S-i, Tsuneyoshi T, Saito K (2015b) Garlic γ-glutamyl transpeptidases that catalyze deglutamylation of biosynthetic intermediate of alliin. Front Plant Sci 5:758

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Zhang Y, Wang G, Hill L, Weng J-K, Chen X-Y, Xue H, Martin C (2016) A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Sci Adv 2:e1501780

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Hamilton JP, Pham GM, Crisovan E, Wiegert-Rininger K, Vaillancourt B, DellaPenna D, Buell CR (2017) De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin. GigaScience 6:1–7

    Google Scholar 

Download references

Acknowledgements

This research was supported, in part, by Grants-in-aids, MEXT KAKENHI for Scientific Research on Innovative Areas to M.Y., JSPS KAKENHI for Scientific Research (A) to K.S., Research and Development Grant of Japan Agency for Medical Research and Development (AMED), and Strategic Priority Research Promotion Program, Phytochemical Plant Molecular Sciences, from Chiba University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mami Yamazaki or Kazuki Saito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, M., Rai, A., Yoshimoto, N. et al. Perspective: functional genomics towards new biotechnology in medicinal plants. Plant Biotechnol Rep 12, 69–75 (2018). https://doi.org/10.1007/s11816-018-0476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-018-0476-9

Keywords

Navigation