Skip to main content
Log in

Heterologous expression of the Brassica rapa transcription factor BrWRKY7 enhances resistance against bacterial soft rot caused by Pectobacterium carotovorum in Arabidopsis

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most widely consumed vegetables cultivated worldwide, including Republic of Korea, and can be seriously damaged by bacterial soft rot disease, leading to major crop loss during storage and cultivation. The necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) causes bacterial soft rot. In this study, we show that Brassica WRKY7 (BrWRKY7) transcription factor was induced by Pcc infection, and we analyzed its function during Pcc infection in Arabidopsis thaliana by generating the transgenic plants in which BrWRKY7 was heterologously expressed. Upon infection by Pcc of transgenic Arabidopsis plants constitutively overexpressing BrWRKY7, bacterial growth was inhibited and disease symptoms were significantly reduced compared to wild type, indicating that BrWRKY7 may play a role in defense responses to Pcc in Arabidopsis. Moreover, a defense marker gene, PDF1.2, was highly induced in BrWRKY7 overexpression transgenic plants, implying that BrWRKY7 is involved in the jasmonic acid (JA)-related defense pathway. The YFP-BrWRKY7 protein was exclusively localized in the nucleus in Arabidopsis protoplasts. These results demonstrate that pathogen-induced BrWRKY7 enhances disease resistance to Pcc in Arabidopsis, and works effectively as a positive transcription factor for the expression of defense-related genes. The discovery of the interesting gene BrWRKY7, isolated from Brassica rapa, which is able to activate defense responses to Pcc infection, may help to develop pathogen-resistant crops using this application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BrWRKY7 :

Brassica rapa WRKY7

JA:

Jasmonic acid

Pcc :

Pectobacterium carotovorum subsp. carotovorum

Pst :

Pseudomonas syringae pv. tomato

SA:

Salicylic acid

TF:

Transcription factor

References

  • Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414

    Article  CAS  PubMed  Google Scholar 

  • Ananda Baskaran S, Kazmer GW, Hinckley L, Andrew SM, Venkitanarayanan K (2009) Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro. J Dairy Sci 92:1423–1429

    Article  CAS  PubMed  Google Scholar 

  • Aslam M, Sinha VB, Singh RK, Anandhan S, Pande V, Ahmed Z (2010) Isolation of cold stress-responsive genes from Lepidium latifolium by suppressive subtraction hybridization. Acta Physiologiae Plantarum 32:205–210

    Article  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi C, Park YH, Kwon SI, Yun C, Ahn I, Park SR, Hwang DJ (2014) Identification of AtWRKY75 as a transcriptional regulator in the defense response to Pcc through the screening of Arabidopsis activation-tagged lines. Plant Biotechnol Rep 8:183–192

    Article  Google Scholar 

  • Davidsson PR, Kariola T, Niemi O, Palva ET (2013) Pathogenicity of and plant immunity to soft rot pectobacteria. Front Plant Sci 4:191

    Article  PubMed Central  PubMed  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  CAS  PubMed  Google Scholar 

  • Ellis C, Turner JG (2001) The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13:1025–1033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Hwang SH, Lee IA, Yie SW, Hwang DJ (2008) Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227:1141–1150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang SH, Yie SW, Hwang DJ (2011) Heterologous expression of OsWRKY6 gene in Arabidopsis activates the expression of defense related genes and enhances resistance to pathogens. Plant Sci 181:316–323

    Article  CAS  PubMed  Google Scholar 

  • Jang JY, Choi CH, Hwang DJ (2010) The WRKY superfamily of rice transcription factors. Plant Pathol J 26:110–114

    Article  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289–3302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KC, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol 142:1180–1192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SS, Ko YJ, Jang JY, Lee T, Lim MH, Park SY, Bae SC, Yun CH, Park BS, Hwang DJ (2008) Isolation and expression analysis of Brassica rapa WRKY 7. Plant Pathol J 24:478–481

    Article  CAS  Google Scholar 

  • Kim HS, Park YH, Nam H, Lee YM, Song K, Choi C, Ahn I, Park SR, Lee YH, Hwang DJ (2014) Overexpression of the Brassica rapa transcription factor WRKY12 results in reduced soft rot symptoms caused by Pectobacterium carotovorum in Arabidopsis and Chinese cabbage. Plant Biology 16:973–981

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Kim DH, Kim YW, Hwang I (2001) Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. Plant Cell 13:2175–2190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma B, Hibbing ME, Kim HS, Reedy RM, Yedidia I, Breuer J, Breuer J, Glasner JD, Perna NT, Kelman A, Charkowski AO (2007) Host range and molecular phylogenies of the soft rot enterobacterial genera pectobacterium and dickeya. Phytopathology 97:1150–1163

    Article  PubMed  Google Scholar 

  • Manners JM, Penninckx IA, Vermaere K, Kazan K, Brown RL, Morgan A, Maclean DJ, Curtis MD, Cammue BP, Broekaert WF (1998) The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Mol Biol 38:1071–1080

    Article  CAS  PubMed  Google Scholar 

  • Norman-Setterblad C, Vidal S, Palva ET (2000) Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant Microbe Interact 13:430–438

    Article  CAS  PubMed  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park YH, Choi C, Park EM, Kim HS, Park HJ, Bae SC, Ahn I, Kim MG, Park SR, Hwang DJ (2012) Over-expression of rice leucine-rich repeat protein results in activation of defense response, thereby enhancing resistance to bacterial soft rot in Chinese cabbage. Plant Cell Rep 31:1845–1850

    Article  CAS  PubMed  Google Scholar 

  • Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Ren JP, Petzoldt R, Dickson MH (2001) Genetics and population improvement of resistance to bacterial soft rot in Chinese cabbage. Euphytica 117:197–207

    Article  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Ulker B, Mukhtar MS, Somssich IE (2007) The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226:125–137

    Article  PubMed  Google Scholar 

  • van Kan JA (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    Article  PubMed  Google Scholar 

  • Vanjildorj E, Song SY, Yang ZH, Choi JE, Noh YS, Park S, Lim WJ, Cho KM, Yun HD, Lim YP (2009) Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin. Plant Cell Rep 28:1581–1591

    Article  CAS  PubMed  Google Scholar 

  • Verica JA, Medford JI (1997) Modified MER15 expression alters cell expansion in transgenic Arabidopsis plants. Plant Sci 125:201–210

    Article  CAS  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2005) Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell 17:944–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Robatzek S (2010) Pathogen-associated molecular pattern-triggered immunity: veni, vidi…? Plant Physiol 154:551–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants PJ007850 and PJ010870 from the RDA awarded to Dr. Duk-Ju Hwang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duk-Ju Hwang.

Additional information

Yu Jin Ko and Seokhyun Lee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, Y.J., Lee, S., Song, K. et al. Heterologous expression of the Brassica rapa transcription factor BrWRKY7 enhances resistance against bacterial soft rot caused by Pectobacterium carotovorum in Arabidopsis . Plant Biotechnol Rep 9, 179–186 (2015). https://doi.org/10.1007/s11816-015-0354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-015-0354-7

Keywords

Navigation