Skip to main content
Log in

Surface modification of petroleum residue-activated carbon using citric acid for enhanced cobalt removal from an aqueous solution

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Although the amount of petroleum residues produced from oil refinery processes has increased, there has been limited research for the residues. In this work, we developed petroleum residue-activated carbon (PAC) by chemical modification with citric acid as a novel adsorbent The optimal concentration of citric acid for PAC was chosen as the 6 M (named PAC-CA6) and the adsorption behavior of Co(II) was investigated. The experimental data were analyzed using various isotherm and kinetic models. The maximum adsorption capacity of 12.50 mg/g was determined using the Langmuir model. The pseudo-second-order model was found to be the most suitable for describing the adsorption kinetics. PAC-CA6 was characterized by using various instrumental analyses including FE-SEM, FTIR, and XPS. The Boehm titration method indicated the presence of multiple oxygen groups in PAC-CA6. Conclusively, the mechanism of Co(II) adsorption onto PAC-CA6 involved electrostatic interactions between Co(II) ions and carboxylic groups present on the surface of PAC-CA6. From the result, the PAC-CA6 could be sufficiently used as a potential adsorbent for the removal of cobalt from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dawoud, M. Hegazy, W Helew and H. Saleh, J. Nucl. Energy Sci. Power Gener. Technol, 3, 10 (2021).

    Google Scholar 

  2. J. Livingood and G. Seaborg, Phys. Rev., 60, 913 (1941).

    Article  CAS  Google Scholar 

  3. M. C. Lagunas-Solar, J. Food Prot., 58, 186 (1995).

    Article  PubMed  Google Scholar 

  4. M.H. Pham, C. Yu, M. Rusch, C. Holloway, E. Chang and M.L. Apuzzo, World Neurosurg., 82, 1060 (2014).

    Article  PubMed  Google Scholar 

  5. A. Abdelnour-Esquivel, J. Perez, M. Rojas, W. Vargas and A. Gat-ica-Arias, In Vitro Cell. Dev. Biol. Plant, 56, 88 (2020).

    Article  Google Scholar 

  6. R. Gephart, Phys. Chem. Earth., 35, 298 (2010).

    Article  Google Scholar 

  7. L. G. Yamamoto, Pediatr. Emerg. Care, 29, 1016 (2013).

    Article  PubMed  Google Scholar 

  8. D.-M. Bordean, A.-B. Borozan, D. Nica, S. Alda, L. Cojocaru, M. Horablaga, N. Filimon and I. Gergen, Int. Multidiscip. Sci. Geo-Conference Surv. Geol. Min. Ecol. Manag. SGEM, 5, 101 (2012).

    Google Scholar 

  9. A. B. BotelhoJunior, D. B. Dreisinger and D. C. Espinosa, Min. Metall. Explor., 36, 199 (2019).

    Google Scholar 

  10. U.-K. Hwang, H.-M. Ryu, Y.-H. Choi, S.-M. Lee and H.-S. Kang, Korean J. Environ. Biol., 29, 251 (2011).

    Google Scholar 

  11. S. Jahan and V Strezov, PloS One, 12, 0189284 (2017).

    Google Scholar 

  12. M. Jiang, K. Wang, Y. Wang, Q. Zhao and W. Wang, Sci. Total Environ., 813, 151908 (2021).

    Article  PubMed  Google Scholar 

  13. J. Kettelarij, K. Midander, C. Lidén and A. Julander, Contact Derm., 79, 226 (2018).

    Article  CAS  Google Scholar 

  14. M. J. Lain, J. Power Sources, 97, 736 (2001).

    Article  Google Scholar 

  15. L. Li, J. Lu, Y. Ren, X. X. Zhang, R. J. Chen, F. Wu and K. Amine, J. Power Sources, 218, 21 (2012).

    Article  CAS  Google Scholar 

  16. E. M. Melchor-Martínez, R. Macias-Garbett, A. Malacara-Becerra, H. M. Iqbal, J. E. Sosa-Hernández and R. Parra-Saldívar, Case Stud. Chem. Environ. Eng., 3, 100104 (2021).

    Article  Google Scholar 

  17. S. Tao, T. Wang, Y. Wu, C. Wang and G. Wang, J. Hazard. Mater., 415, 125680 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. L. Leyssens, B. Vinck, C. Van Der Straeten, F. Wuyts and L. Maes, Toxicology, 387, 43 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. S. Mahey, R. Kumar, M. Sharma, V. Kumar and R. Bhardwaj, SN Appl. Sci., 2, 665 (2020).

    Article  Google Scholar 

  20. A. Bhatnagar, A. Minocha and M. Sillanpää, Biochem. Eng. J., 48, 181 (2010).

    Article  CAS  Google Scholar 

  21. A.B. BotelhoJunior, D.B. Dreisinger and D.C. Espinosa, Mining, Metallurgy & Exploration, 36, 199 (2019).

    Article  Google Scholar 

  22. J. Hou, X. He, S. Zhang, J. Yu, M. Feng and X. Li, Sci. Total Environ., 770, 145311 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. M. A. Islam, D. W. Morton, B. B. Johnson, B. K. Pramanik, B. Mainali and M. J. Angove, Environ. Nanotechnol. Monit. Manag., 10, 435 (2018).

    Google Scholar 

  24. F. Jia, Y. Yin and J. Wang, Prog. Nucl. Energy, 103, 20 (2018).

    Article  CAS  Google Scholar 

  25. S. Matagi, D. Swai and R. Mugabe, Afr. J. Trop. Hydrobiol. Fish., 8, 23 (1998).

    Article  Google Scholar 

  26. D. Rana, T. Matsuura, M. Kassim and A. Ismail, Desalination, 321, 77 (2013).

    Article  CAS  Google Scholar 

  27. W. Zhang, J. T. Andersson, H. J. Räder and K. Müllen, Carbon, 95, 672 (2015).

    Article  CAS  Google Scholar 

  28. G. P. Blümer, G. Collin and H. Höke Ind. Carbon and Graphite Mater., 1, 172 (2021).

    Google Scholar 

  29. J. G. Kim, J. H. Kim, B.-J. Song, Y. P. Jeon, C. W. Lee, Y.-S. Lee and J.S. Im, Fuel, 167, 25 (2016).

    Article  CAS  Google Scholar 

  30. A. Martínez-Alonso, J. Bermejo and J. Tascón, J. Therm. Anal., 38, 811 (1992).

    Article  Google Scholar 

  31. M. Pérez, M. Granda, R. Santamaría, T. Morgan and R. Menéndez, Fuel, 83, 1257 (2004).

    Article  Google Scholar 

  32. C. H. Kwak, C. Lim, S. Kim and Y.-S. Lee, J. Ind. Eng. Chem., 116, 21 (2022).

    Article  CAS  Google Scholar 

  33. Q. Gao, L. Demarconnay, E. Raymundo-Piñero and F. Béguin, Energy Environ. Sci., 5, 9611 (2012).

    Article  CAS  Google Scholar 

  34. C. W Tan, K. H. Tan, Y. T. Ong, A. R. Mohamed, S. H. S. Zein and S. H. Tan, Environ. Chem. Lett., 10, 265 (2012).

    Article  CAS  Google Scholar 

  35. M. Uchimiya, S. Chang and K. T. Klasson, J. Hazard. Mater., 190, 432 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. X. Yang, Y. Wan, Y. Zheng, F. He, Z. Yu, J. Huang, H. Wang, Y. S. Ok, Y. Jiang and B. Gao, Chem. Eng. J., 366, 608 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. T. Wang, M. Xu, X. Han, S. Yang and D. Hua, J. Hazard. Mater., 368, 214 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. C. Zhang, Y. Li, Y. Li, W. Zhang, X. Wang, X. He and M. Yu, Chemosphere, 216, 379 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. J.-Y. Kim, S. Oh and Y.-K. Park, J. Hazard. Mater., 384, 121356 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. X. N. Law, W. Y. Cheah, K. W. Chew, M. F. Ibrahim, Y.-K. Park, S.-H. Ho and P. L. Show, Environ. Res., 204, 111966 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. D. Lee, H. Nam, M. W Seo, S. H. Lee, D. Tokmurzin, S. Wang and Y.-K. Park, Chem. Eng. J, 447, 137501 (2022).

    Article  CAS  Google Scholar 

  42. J. Y. Seo, D. Tokmurzin, D. Lee, S. H. Lee, M. W Seo and Y-K. Park, Bioresour. Technol., 447, 127740 (2022).

    Article  Google Scholar 

  43. M. W. Seo, S. H. Lee, H. Nam, D. Lee, D. Tokmurzin, S. Wang and Y.-K. Park, Bioresour. Technol., 343, 126109 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. J. R. Koduru, L. P. Lingamdinne, J. Singh and K.-H. Choo, Process Saf. Environ. Prot., 103, 87 (2016).

    Article  CAS  Google Scholar 

  45. Y. Yang, Y. Chun, G. Sheng and M. Huang, Langmuir, 20, 6736 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. H. Boehm, Carbon, 32, 759 (1994).

    Article  CAS  Google Scholar 

  47. H.P. Boehm, Carbon, 40, 145 (2002).

    Article  CAS  Google Scholar 

  48. A. Proctor and J. Toro-Vazquez, J. Am. Oil Chem. Soc., 73, 1627 (1996).

    Article  CAS  Google Scholar 

  49. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).

    Article  CAS  Google Scholar 

  50. H. Lalhruaitluanga, K. Jayaram, M. Prasad and K. Kumar, J. Hazardl. Mater., 175, 311 (2010).

    Article  CAS  Google Scholar 

  51. S. Khandaker, T. Kuba, S. Kamida and Y. Uchikawa, J. Environ. Chem. Eng, 5, 1456 (2017).

    Article  CAS  Google Scholar 

  52. R. D. Johnson and F. H. Arnold, Biochim. Biophys. Acta, 1247, 293 (1995).

    Article  PubMed  Google Scholar 

  53. S. Lagergren, Kongl. Vetensk. Acad. Handl., 24, 1 (1898).

    Google Scholar 

  54. Y.-S. Ho and G. McKay, Chem. Eng. J., 70, 115 (1998).

    Article  CAS  Google Scholar 

  55. S. Roginsky and Y.B. Zeldovich, Acta Phys. Chem. USSR, 1, 2019 (1934).

    Google Scholar 

  56. I. McLintock, Nature, 216, 1204 (1967).

    Article  CAS  Google Scholar 

  57. M. Galedar and H. Younesi, Am. J. Biochem. Biotechnol, 9, 47 (2013).

    Article  CAS  Google Scholar 

  58. M. He, Y Zhu, Y. Yang, B. Han and Y. Zhang, Appl. Clay Sci., 54, 292 (2011).

    Article  CAS  Google Scholar 

  59. D. Imessaoudene, S. Hanini, A. Bouzidi and A. Ararem, Desalin. Water Treat., 57, 6116 (2016).

    Article  CAS  Google Scholar 

  60. E. D. van Hullebusch, M. H. Zandvoort and P. N. Lens, J. Chem. Technol. Biotechnol., 79, 1219 (2004).

    Article  CAS  Google Scholar 

  61. Ö. Yavuz, Y. Altunkaynak and F. Güzel, Water Res., 37, 948 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. S. Zhuang, Y. Yin and J. Wang, Nucl. Eng. Technol., 50, 211 (2018).

    Article  CAS  Google Scholar 

  63. S. Chegrouche, A. Mellah and M. Barkat, Desalination, 235, 306 (2009).

    Article  CAS  Google Scholar 

  64. X. Guo and J. Wang, J. Mol. Liq., 288, 111100 (2019).

    Article  CAS  Google Scholar 

  65. J. O. Ighalo, K. O. Iwuozor, C. A. Igwegbe and A. G. Adeniyi, Colloids Surf. A: Physicochem. Eng. Asp., 626, 127119 (2021).

    Article  CAS  Google Scholar 

  66. M. Castro-Cabado, F. J. Parra-Ruiz, A. Casado and J. S. Roman, Polym. Polym. Compos., 24, 643 (2016).

    CAS  Google Scholar 

  67. M. Thirumavalavan, Y.-L. Lai and J.-F. Lee, J. Chem. Eng. Data, 56, 2249 (2011).

    Article  CAS  Google Scholar 

  68. L. Xia, Y. Lu, H. Meng and C. Li, J. Hazard. Mater., 393, 122487 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Y. Aşçı and Ş. Kaya, Desalin. Water Treat., 57, 13091 (2016).

    Article  Google Scholar 

  70. A. Valverde, G. I. Tovar, N. A. Rio-López, D. Torres, M. Rosales, S. Wuttke, A. Fidalgo-Marijuan, J. M. A. Porro, M. Jiménez-Ruiz and V. García Sakai, Chem. Mater., 34, 9666 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (20012763, development of petroleum residue-based porous adsorbent for industrial wastewater) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Soon Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JS., Jeon, C. & Choi, S.S. Surface modification of petroleum residue-activated carbon using citric acid for enhanced cobalt removal from an aqueous solution. Korean J. Chem. Eng. 40, 2199–2208 (2023). https://doi.org/10.1007/s11814-023-1470-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1470-7

Keywords

Navigation