Skip to main content
Log in

High-efficiency oil/water separation of hydrophobic stainless steel Mesh filter through carbon and fluorine surface treatment

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

With the rapid industrial development, the discharge of oily wastewater has increased and polluted the environment. The conventional oil/water separation method has problems, such as generating harmful by-products, high operating costs, and low efficiency. For this reason, research on the development of ideal oil/water separation materials is being actively conducted. In this work, a hydrophobic mesh filter with excellent separation efficiency and separation speed was prepared through the surface coating of stainless steel Mesh (SUS Mesh), which has a large aperture size. After carbon coating on the surface of the SUS Mesh using the physical vapor deposition method, hydrophobicity was improved by giving fluorine functional groups to the surface using fluorine plasma. The manufactured mesh filter separated the oil at a high flux (6,062 Lm−2h−1) in a horizontal condition without external force, and at a high speed of fewer than two minutes, with a separation efficiency is 99.88%. Very high separation efficiency was observed. In addition, the average efficiency of 99.77% was maintained even in continuous oil/water separation. The hydrophobic mesh filter fabricated by a simple process in this study can be evaluated as a promising oil/water separation material that can be actually applied to separate oil from oily wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Huang, R. H. A. Ras and X. Tian, Curr. Opin. Colloid Interface Sci., 36, 90 (2018).

    Article  CAS  Google Scholar 

  2. W. Kang, M. Li, H. Yang, X. Kang, F. Wang, H. Jiang, M. Zhang, T. Zhu and B. Sarsenbekuly, J. Ind. Eng. Chem., 93, 415 (2021).

    Article  CAS  Google Scholar 

  3. I. B. Ivshina, M. S. Kuyukina, A. V. Krivoruchko, A. A. Elkin, S. O. Makarov, C. J. Cunningham, T. A. Peshkur, R. M. Atlas and J.C. Philp, Environ. Sci.: Process. Impacts, 17, 120 (2015).

    Google Scholar 

  4. V. Broje and A. A. Keller, Environ. Sci. Technol., 40, 791 (2006).

    Article  Google Scholar 

  5. N. Syed, J. Huang and Y. Feng, Carbon Lett., 32, 81 (2022).

    Article  Google Scholar 

  6. S. Basak, J. Nanda and A. Banerjee, J. Mater. Chem., 22, 11658 (2012).

    Article  CAS  Google Scholar 

  7. S. Chen, W. Li, F. Li, T. Li and W. Cao, J. Ind. Eng. Chem., 80, 33 (2019).

    Article  CAS  Google Scholar 

  8. C.-J. Wang, W.-F. Kuan, H.-P. Lin, Y. A. Shchipunov and L.-J. Chen, J. Ind. Eng. Chem., 96, 144 (2021).

    Article  CAS  Google Scholar 

  9. Q. Wang, Z. Yu, X. Zhu, Q. Xiang, H. Chen and Y. Pang, J. Ind. Eng. Chem., 115, 314 (2022).

    Article  CAS  Google Scholar 

  10. Y. O. Raji, M. H. D. Othman, N. A. H. S. Nordin, M. R. Adam, Z. S. Tai, J. Usman and A. F. Ismail, Korean J. Chem. Eng., 37, 1631 (2020).

    Article  CAS  Google Scholar 

  11. S. Jo and Y. Kim, Korean J. Chem. Eng., 33, 3203 (2016).

    Article  CAS  Google Scholar 

  12. Z. Li, T. Shi, T. Zhang, Q. Guo, F. Qiu, X. Yue and D. Yang, Korean J. Chem. Eng., 36, 92 (2019).

    Article  CAS  Google Scholar 

  13. K. Y. Eum, I. Phiri, J. W. Kim, W. S. Choi, J. M. Ko and H. Jung, Korean J. Chem. Eng., 36, 1313 (2019).

    Article  CAS  Google Scholar 

  14. Z. Li and Z. Guo, Mater. Des., 196, 109144 (2020).

    Article  CAS  Google Scholar 

  15. F. R. Sultanov, C. Daulbayev, B. Bakbolat, Z. A. Mansurov, A. A. Urazgaliyeva, R. Ebrahim, S. S. Pei and K.-P. Huang, Carbon Lett., 30, 81 (2020).

    Article  Google Scholar 

  16. Y. Jiang, S. Wan, W. Zhao, W. Yu, S. Wang, Z. Yu, Q. Yang, W. Zhou and X. Liu, Carbon Lett., 32, 1047 (2022).

    Article  Google Scholar 

  17. Z. Chu, Y. Feng and S. Seeger, Angew. Chem. Int. Ed., 54, 2328 (2015).

    Article  CAS  Google Scholar 

  18. Z. Xue, Y. Cao, N. Liu, L. Feng and L. Jiang, J. Mater. Chem. A, 2, 2445 (2014).

    Article  CAS  Google Scholar 

  19. B. Wang, W. Liang, Z. Guo and W. Liu, Chem. Soc. Rev., 44, 336 (2015).

    Article  PubMed  Google Scholar 

  20. M. Zhu, Y. Liu, M. Chen, Z. Xu, L. Li and Y. Zhou, J. Pet. Sci. Eng., 205, 108889 (2021).

    Article  CAS  Google Scholar 

  21. J. Wang, Y. K. Park and Y. M. Jo, J. Ind. Eng. Chem., 89, 400 (2020).

    Article  CAS  Google Scholar 

  22. A. S. Singh, S. Jindani, B. Ganguly and A. V. Biradar, J. Ind. Eng. Chem., 112, 218 (2022).

    Article  CAS  Google Scholar 

  23. Y. Liu, L. Wang, H. Lu and Z. Huang, ACS Appl. Polym. Mater., 2, 4770 (2020).

    Article  CAS  Google Scholar 

  24. J.-H. Kim, S. Lee and Y.-S. Lee, J. Ind. Eng. Chem., 27, 307 (2015).

    Article  CAS  Google Scholar 

  25. S. Sriram, R. K. Singh and A. Kumar, Mater. Today: Proc., 26, 2495 (2020).

    CAS  Google Scholar 

  26. S. Gbewonyo, S. Xiu, A. Shahbazi and L. Zhang, Carbon Lett., 30, 289 (2020).

    Article  Google Scholar 

  27. D. Kim, K. H. Kim, C. Lim and Y.-S. Lee, Carbon Lett., 32, 321 (2022).

    Article  Google Scholar 

  28. A. A. Voznesenskaya, A. V. Zhdanov and L. V. Belyaev, Mater. Today: Proc., 19, 2270 (2019).

    CAS  Google Scholar 

  29. K. H. Kim, J. H. Cho, J. U. Hwang, J. S. Im and Y.-S. Lee, J. Ind. Eng. Chem., 99, 48 (2021).

    Article  CAS  Google Scholar 

  30. S. Ha, C. Lim and Y.-S. Lee, J. Ind. Eng. Chem., 111, 1 (2022).

    Article  CAS  Google Scholar 

  31. S. Kim, C. Lim, D. Kim and Y.-S. Lee, Appl. Chem. Eng., 32, 653 (2021).

    CAS  Google Scholar 

  32. D. Kim, R. Mauchauffé, J. Kim and S. Y. Moon, Sci. Rep., 11, 1 (2021).

    Article  Google Scholar 

  33. S. Kirk, M. Strobel, C.-Y. Lee, S. J. Pachuta, M. Prokosch, H. Lechuga, M. E. Jones, C. S. Lyons, S. Degner and Y. Yang, Plasma Process. Polym., 7, 107 (2010).

    Article  CAS  Google Scholar 

  34. Y. Yang, M. Strobel, S. Kirk and M. J. Kushner, Plasma Process. Polym., 7, 123 (2010).

    Article  CAS  Google Scholar 

  35. D. An, K. H. Kim, J. G. Kim and Y.-S. Lee, Appl. Chem. Eng., 30, 297 (2019).

    CAS  Google Scholar 

  36. J.-C. E. Yang, M.-P. Zhu, D. D. Dionysiou, B. Yuan and M.-L. Fu, Chem. Eng. J., 430, 133102 (2022).

    Article  CAS  Google Scholar 

  37. Y. Kim, Y. Lee, S. Han and K.-J. Kim, Surf. Coat. Technol., 200, 4763 (2006).

    Article  CAS  Google Scholar 

  38. M. E. H. M. da Costa, F. L. Freire, L. G. Jacobsohn, D. Franceschini, G. Mariotto and I. R. J. Baumvol, Diam. Relat. Mater., 10, 910 (2001).

    Article  CAS  Google Scholar 

  39. S. M. Mukhopadhyay, P. Joshi, S. Datta, J. G. Zhao and P. France, J. Phys. D: Appl. Phys., 35, 1927 (2002).

    Article  CAS  Google Scholar 

  40. C. Lim, Y. Ko, C. H. Kwak, S. Kim and Y.-S. Lee, Carbon Lett., 32, 1329 (2022).

    Article  Google Scholar 

  41. D. An, K. H. Kim, C. Lim and Y.-S. Lee, Carbon Lett., 31, 1357 (2021).

    Article  Google Scholar 

  42. T. Fan, Y. Su, Q. Fan, Z. Li, W. Cui, M. Yu, X. Ning, S. Ramakrishna and Y. Long, ACS Appl. Mater. Interfaces, 13, 19377 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. S. Fan, Z. Wang, P. Liang, H. Li, Y. Zhang, W. Fan and G. Xu, J. Mater. Res. Technol., 19, 2238 (2022).

    Google Scholar 

  44. A. Xie, J. Cui, J. Yang, Y. Chen, J. Dai, J. Lang, C. Li and Y. Yan, J. Mater. Chem. A, 7, 8491 (2019).

    Article  CAS  Google Scholar 

  45. M. Tao, L. Xue, F. Liu and L. Jiang, Adv. Mater., 26, 2943 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Industrial Strategic Technology Development Program (20012763, development of petroleum residue-based porous adsorbent for industrial wastewater treatment) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Seak Lee.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2022_1330_MOESM1_ESM.pdf

High-efficiency oil/water separation of hydrophobic stainless steel Mesh filter through carbon and fluorine surface treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myeong, S., Lim, C., Kim, S. et al. High-efficiency oil/water separation of hydrophobic stainless steel Mesh filter through carbon and fluorine surface treatment. Korean J. Chem. Eng. 40, 1418–1424 (2023). https://doi.org/10.1007/s11814-022-1330-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1330-x

Keywords

Navigation