Skip to main content
Log in

Methane oxidation to formaldehyde over vanadium oxide supported on various mesoporous silicas

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To investigate the role of vanadium oxide supported on mesoporous silica (VOx/m-SiO2) catalysts in methane oxidation to formaldehyde, various catalysts were prepared. The type of m-SiO2 (SBA-15 and MCF-17), vanadium loading (1, 3, and 5%), and preparation method (wet impregnation; WI and dry impregnation; DI) were changed to produce VOx/m-SiO2 with different vanadium species. Because of the larger surface area and pore size, a higher dispersion of vanadium loading, 1% VOx/MCF-17(DI), showed the highest conversion (20.2%) in methane oxidation at 600 °C. Various characterizations revealed that DI was a better method to produce isolated tetrahedral monovanadate species in VOx/m-SiO2 catalysts than WI. As the vanadium loading was decreased from 5 to 1%, the methane conversion was further increased due to the higher degree of dispersion of monomeric VO4 generated in the catalysts with low vanadium loading. The combined results demonstrate that the dispersion of vanadium and the isolated monomeric VO4 phase increased when the vanadium catalyst was loaded on MCF-17 and prepared by the DI method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Ohler and A. T. Bell, J. Catal., 231, 115 (2005).

    Article  CAS  Google Scholar 

  2. F. Arena, N. Giordano and A. Parmaliana, J. Catal., 167, 66 (1997).

    Article  CAS  Google Scholar 

  3. N. Ohler and A. T. Bell, J. Phys. Chem. B, 110, 2700 (2006).

    Article  CAS  Google Scholar 

  4. J. H. Lunsford, Catal. Today, 63, 165 (2000).

    Article  CAS  Google Scholar 

  5. C. Hammond, S. Conrad and I. Hermans, ChemSusChem, 5, 1668 (2012).

    Article  CAS  Google Scholar 

  6. M. Monai, T. Montini, R. J. Gorte and P. Fornasiero, Eur. J. Inorg. Chem., 25, 2884 (2018).

    Article  Google Scholar 

  7. L. Nguyen, S. Loridant, H. Launay, A. Pigamo, J. Dubois and J. Millet, J. Catal., 237, 38 (2006).

    Article  CAS  Google Scholar 

  8. F. Arena and A. Parmaliana, Acc. Chem. Res., 36, 867 (2003).

    Article  CAS  Google Scholar 

  9. G. Du, S. Lim, Y. Yang, C. Wang, L. Pfefferle and G. L. Haller, Appl. Catal. A: Gen., 302, 48 (2006).

    Article  CAS  Google Scholar 

  10. G. J. Hutchings, M. S. Scurrell and J. R. Woodhouse, Chem. Soc. Rev., 18, 251 (1989).

    Article  CAS  Google Scholar 

  11. R.G. Herman, Q. Sun, C. Shi, K. Kier, C.-B. Wang, H. Hu, I. E. Wachs and M. M. Bhasin, Catal. Today, 37, 1 (1997).

    Article  CAS  Google Scholar 

  12. A. Parmaliana, V. Sokolovskii, D. Miceli, F. Arena and N. Giordano, ACS Symp. Ser., Am. Chem. Soc., Washington, DC, 43 (1993).

  13. X. H. Sun, Y. F. Shi, P. Zhang, C. M. Zheng, X. Y. Zheng, F. Zhang, Y. C. Zhang, N. J. Guan, D. Y. Zhao and G. D. Stucky, J. Am. Chem. Soc., 133, 14542 (2011).

    Article  CAS  Google Scholar 

  14. C. Perego and R. Millini, Chem. Soc. Rev., 42, 3956 (2013).

    Article  CAS  Google Scholar 

  15. D. Gu and F. Schuth, Chem. Soc. Rev., 43, 313 (2014).

    Article  CAS  Google Scholar 

  16. P. Wallis, S. Wohlrab, V. N. Kalevaru, M. Frank and A. Martin, Catal. Today, 278, 120 (2016).

    Article  CAS  Google Scholar 

  17. K. Inumaru, M. Misono and T. Okuhara, Appl. Catal. A: Gen., 149, 133 (1997).

    Article  CAS  Google Scholar 

  18. I. E. Wachs, Dalton Trans., 42, 11762 (2013).

    Article  CAS  Google Scholar 

  19. J. A. Schwarz, C. Contescu and A. Contescu, Chem. Rev., 95, 477 (1995).

    Article  CAS  Google Scholar 

  20. D. Zhao, J. Sun, Q. Li and G. D. Stucky, Chem. Mater., 12, 275 (2000).

    Article  CAS  Google Scholar 

  21. T. Klimova, A. Esquivel, J. Reyes, M. Rubio, X. Bokhmi and J. Aracil, Micropor. Mesopor. Mater., 93, 331 (2006).

    Article  CAS  Google Scholar 

  22. C.-K. Tsung, J. N. Kuhn, W. Huang, C. Aliaga, L.-I. Hung, G. A. Somorjai and P. Yang, J. Am. Chem. Soc., 131, 5816 (2009).

    Article  CAS  Google Scholar 

  23. S. Siggia and W. Maxcy, Anal. Chem., 19, 1023 (1947).

    Article  CAS  Google Scholar 

  24. T. Sugino, A. Kido, N. Azuma, A. Ueno and Y. Udagawa, J. Catal., 190, 118 (2000).

    Article  CAS  Google Scholar 

  25. C. A. Carrero, R. Schloegl, I.E. Wachs and R. Schomaecker, ACS Catal., 4, 3357 (2014).

    Article  CAS  Google Scholar 

  26. G. Du, S. Lim, M. Pinault, C. Wang, F. Fang, L. Pfefferle and G. L. Haller, J. Catal., 253, 74 (2008).

    Article  CAS  Google Scholar 

  27. B. Olthof, A. Khodakov, A. T. Bell and E. Iglesia, J. Phys. Chem. B, 104, 1516 (2000).

    Article  CAS  Google Scholar 

  28. D. Wei, H. Wang, X. Feng, W.-T. Chueh, P. Ravikovitch, M. Lyubovsky, C. Li, T. Takeguchi and G. L. Haller, J. Phys. Chem. B, 103, 2113 (1999).

    Article  CAS  Google Scholar 

  29. V. Sokolovskii, F. Arena, S. Coluccia and A. Parmaliana, J. Catal., 173, 238 (1998).

    Article  CAS  Google Scholar 

  30. X. Gao and I.E. Wachs, J. Phys. Chem. B, 104, 1261 (2000).

    Article  CAS  Google Scholar 

  31. L. J. Burcham, G. Deo, X. Gao and I.E. Wachs, Top. Catal., 11, 85 (2000).

    Article  Google Scholar 

  32. X. Gao, S. R. Bare, B. M. Weckhuysen and I. E. Wachs, J. Phys. Chem. B, 102, 10842 (1998).

    Article  CAS  Google Scholar 

  33. H. Launay, S. Loridant, A. Pigamo, J. Dubois and J. Millet, J. Catal., 246, 390 (2007).

    Article  CAS  Google Scholar 

  34. D. E. Keller, T. Visser, F. Soulimani, D. C. Koningsberger and B. M. Weckhuysen, Vib. Spectrosc., 43, 140 (2007).

    Article  CAS  Google Scholar 

  35. B. M. Weckhuysen and D. E. Keller, Catal. Today, 78, 25 (2003).

    Article  CAS  Google Scholar 

  36. A. G. Anshits, E. V. Kondratenko, E. N. Voskresenskaya, L. I. Kurteeva and N. I. Pavlenko, Catal. Today, 46, 211 (1998).

    Article  CAS  Google Scholar 

  37. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S.R. Nagel and T. A. Witten, Nature, 389, 827 (1997).

    Article  CAS  Google Scholar 

  38. S. Kumar, J. S. Katz and C. M. Schroeder, Phys. Rev. Fluids, 2, 114304 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015M3D3A1A01064899), and by Technology Innovation Program funded by the Ministry of Trade, Industry & Energy (MOTIE, 20010853).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun Duck Park or Kwangjin An.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, E., Lee, J.G., Park, E.D. et al. Methane oxidation to formaldehyde over vanadium oxide supported on various mesoporous silicas. Korean J. Chem. Eng. 38, 1224–1230 (2021). https://doi.org/10.1007/s11814-021-0758-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0758-8

Keywords

Navigation