Abstract
Reduced Cu/ZnO catalyst was synthesized through solid phase grinding of the mixture of oxalic acid, copper nitrate and zinc nitrate, followed by subsequent calcination in N2 atmosphere without further H2 reduction. The catalysts were characterized by various techniques, such as XRD, TG-DTA, TPR and N2O chemisorption. Characterization results suggested that during the calcination in N2, as-ground precursor (oxalate complexes) decomposed to CuO and ZnO, releasing considerable amount of CO, which could be used for in situ reduction of CuO to Cuo. The in situ reduced O/I-Cu/ZnO catalyst was evaluated in CO2 hydrogenation to methanol, which exhibited superior catalytic performance to its counterpart O/H-Cu/ZnO catalyst obtained through conventional H2 reduction. The decomposition of precursor and reduction of CuO happened simultaneously during the calcination in N2, preventing the growth of active Cu0 species and aggregation of catalyst particles, which was inevitable during conventional H2 reduction process. This method is simple and solvent-free, opening a new route to prepare metallic catalysts without further reduction.
Similar content being viewed by others
References
D. Milani, R. Khalilpour, G. Zahedi and A. Abbas, J. CO 2 Util., 10, 12 (2015).
S. Saeidi, N. Amin and M. Rahimpour, J. CO 2 Util., 5, 66 (2014).
X. Jiang, N. Koizumi, X. Guo and C. Song, Appl. Catal. B: Environ., 170, 173 (2015).
X. Liang, X. Dong and G. Lin, Appl. Catal. B: Environ., 88, 315 (2009).
D. Wang, J. Zhao, H. Song and L. Chou, J. Nat. Gas Chem., 20, 629 (2011).
X. Dong, F. Li, N. Zhao, F. Xiao, J. Wan and Y. Tan, Appl. Catal. B: Environ., 191, 8 (2016).
I. Melián-Cabrera, M. Lopez Granados and J. Fierro, J. Catal., 210, 285 (2002).
L. Angelo, M. Girleanu, O. Ersen, C. Serra, K. Parkhomenko and A. Roger, Catal. Today, 270, 59 (2016).
M. Pori, B. Likozar, M. Marinsěk and Z. Crnjak Orel, Fuel Process. Technol., 146, 39 (2016).
S. Jadhav, P. Vaidya, B. Bhanage and J. Joshi, Chem. Eng., Res. De., 92, 2557 (2014).
X. Liu, G. Lu, Z. Yan and J. Beltramini, Ind. Eng. Chem. Res., 42, 6518 (2003).
J. Chen, W. Li and R. Shen, Korean J. Chem. Eng., 33, 500 (2016).
Y. Jeong, J. Kang, I. Kim, H. Jeong, J. Park, J. Park and J. Jung, Korean J. Chem. Eng., 33, 114 (2016).
L. Shi, P. Zhu, R. Yang, X. Zhang, J. Yao, F. Chen, X. Gao, P. Ai and N. Tsubaki, Catal. Commun., 89, 1 (2017).
X. Guo, D. Mao, G. Lu, S. Wang and G. Wu, Catal. Commun., 12, 1095 (2011).
J. Sun, L. Zhang, C. Ge, C. Tang and L. Dong, Chinese J. Catal., 35, 1347 (2014).
Q. Zhang, T. Zhang, Y. Shi, B. Zhao, M. Wang, Q. Liu, J. Wang, K. Long, Y. Duan and P. Ning, J. CO 2 Util., 17, 10 (2017).
P. Lu, C. Xing, H. Li, X. Gai, Q. Wei, L. Tan, C. Lu, W. Shen, R. Yang and N. Tsubaki, Int. J. Hydrogen Energy, 41, 10680 (2016).
C. Tang, B. Sun, J. Sun, X. Hong, Y. Deng, F. Gao and L. Dong, Catal. Today, 281, 575 (2017).
L. Wang, Y. Liu, M. Chen, Y. Cao, H. He, G. Wu, W. Dai and K. Fan, J. Catal., 246, 193 (2007).
I. Haq and F. Haider, Mater. Lett., 63, 2355 (2009).
D. Dollimore and D. Griffiths, J. Therm. Anal., 2, 229 (1970).
M. A. Gabal, Thermochim. Acta, 402, 199 (2003).
D. Dollimore, D. Griffths and D. Nicholson, J. Chem. Soc., 488, 2617 (1963).
R. Yang, X. Yu, Y. Zhang, W. Li, N. Tsubaki, Fuel, 87, 443 (2008).
J. Fei, Z. Hou, B. Zhu, H. Lou and X. Zheng, Appl. Catal-A: Gen., 304, 49 (2006).
L. Hong, R. Nie, G. Wu and Z. Hou, Fuel, 154, 161 (2015).
D. Kim, C. Yang, Y. Park, K. Kim, S. Jeong, J. Han and Y. Lee, Chem. Phys. Lett., 413, 135 (2015).
J. Szanyi and D. Goodman, Catal. Lett., 10, 383 (1991).
R. van Santen, P. van Leeuwen, J. Moulijn and B. Averill, Catalysis: An Integrated Approach, 5, 218 (1997).
K. Larmier, W.-C. Liao, S. Tada, E. Lam, R. Vérel, A. Bansode, A. Urakawa, A. Comas-Vives and C. Copéret, Angew. Chem. Int. Ed., 56, 2318 (2017).
G. Chinchen, K. Waugh and D. Whan, Appl. Catal., 25, 101 (1986).
P. Rasmussen, M. Kazuta and I. Chorkendorff, Surf. Sci., 318, 267 (1994).
P. Rasmussen, P. Holmblad, T. Askgaard, C. Ovesen, P. Stoltze, J. Nørskov and I. Chorkendorff, Catal. Lett., 3-4, 373 (1994).
J. Yoshihara and C. Campbell, J. Catal., 2, 776 (1996).
J. Yoshihara, S. Parker, A. Schafer and C. Campbell, Catal. Lett., 4, 313 (1995).
T. Fujitani, I. Nakamura, T. Watanabe, T. Uchijima and J. Nakamura, Catal. Lett., 35, 297 (1995).
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
11814_2017_278_MOESM1_ESM.pdf
CO2 hydrogenation to methanol over Cu/ZnO catalysts synthesized via a facile solid-phase grinding process using oxalic acid
Rights and permissions
About this article
Cite this article
Li, W., Lu, P., Xu, D. et al. CO2 hydrogenation to methanol over Cu/ZnO catalysts synthesized via a facile solid-phase grinding process using oxalic acid. Korean J. Chem. Eng. 35, 110–117 (2018). https://doi.org/10.1007/s11814-017-0278-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11814-017-0278-8