Skip to main content
Log in

CO2 hydrogenation to methanol over Cu/ZnO catalysts synthesized via a facile solid-phase grinding process using oxalic acid

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Reduced Cu/ZnO catalyst was synthesized through solid phase grinding of the mixture of oxalic acid, copper nitrate and zinc nitrate, followed by subsequent calcination in N2 atmosphere without further H2 reduction. The catalysts were characterized by various techniques, such as XRD, TG-DTA, TPR and N2O chemisorption. Characterization results suggested that during the calcination in N2, as-ground precursor (oxalate complexes) decomposed to CuO and ZnO, releasing considerable amount of CO, which could be used for in situ reduction of CuO to Cuo. The in situ reduced O/I-Cu/ZnO catalyst was evaluated in CO2 hydrogenation to methanol, which exhibited superior catalytic performance to its counterpart O/H-Cu/ZnO catalyst obtained through conventional H2 reduction. The decomposition of precursor and reduction of CuO happened simultaneously during the calcination in N2, preventing the growth of active Cu0 species and aggregation of catalyst particles, which was inevitable during conventional H2 reduction process. This method is simple and solvent-free, opening a new route to prepare metallic catalysts without further reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Milani, R. Khalilpour, G. Zahedi and A. Abbas, J. CO 2 Util., 10, 12 (2015).

    Article  CAS  Google Scholar 

  2. S. Saeidi, N. Amin and M. Rahimpour, J. CO 2 Util., 5, 66 (2014).

    Article  CAS  Google Scholar 

  3. X. Jiang, N. Koizumi, X. Guo and C. Song, Appl. Catal. B: Environ., 170, 173 (2015).

    Article  Google Scholar 

  4. X. Liang, X. Dong and G. Lin, Appl. Catal. B: Environ., 88, 315 (2009).

    Article  CAS  Google Scholar 

  5. D. Wang, J. Zhao, H. Song and L. Chou, J. Nat. Gas Chem., 20, 629 (2011).

    Article  CAS  Google Scholar 

  6. X. Dong, F. Li, N. Zhao, F. Xiao, J. Wan and Y. Tan, Appl. Catal. B: Environ., 191, 8 (2016).

    Article  CAS  Google Scholar 

  7. I. Melián-Cabrera, M. Lopez Granados and J. Fierro, J. Catal., 210, 285 (2002).

    Article  Google Scholar 

  8. L. Angelo, M. Girleanu, O. Ersen, C. Serra, K. Parkhomenko and A. Roger, Catal. Today, 270, 59 (2016).

    Article  CAS  Google Scholar 

  9. M. Pori, B. Likozar, M. Marinsěk and Z. Crnjak Orel, Fuel Process. Technol., 146, 39 (2016).

    Article  CAS  Google Scholar 

  10. S. Jadhav, P. Vaidya, B. Bhanage and J. Joshi, Chem. Eng., Res. De., 92, 2557 (2014).

    Article  CAS  Google Scholar 

  11. X. Liu, G. Lu, Z. Yan and J. Beltramini, Ind. Eng. Chem. Res., 42, 6518 (2003).

    Article  CAS  Google Scholar 

  12. J. Chen, W. Li and R. Shen, Korean J. Chem. Eng., 33, 500 (2016).

    Article  Google Scholar 

  13. Y. Jeong, J. Kang, I. Kim, H. Jeong, J. Park, J. Park and J. Jung, Korean J. Chem. Eng., 33, 114 (2016).

    Article  CAS  Google Scholar 

  14. L. Shi, P. Zhu, R. Yang, X. Zhang, J. Yao, F. Chen, X. Gao, P. Ai and N. Tsubaki, Catal. Commun., 89, 1 (2017).

    Article  Google Scholar 

  15. X. Guo, D. Mao, G. Lu, S. Wang and G. Wu, Catal. Commun., 12, 1095 (2011).

    Article  CAS  Google Scholar 

  16. J. Sun, L. Zhang, C. Ge, C. Tang and L. Dong, Chinese J. Catal., 35, 1347 (2014).

    Article  CAS  Google Scholar 

  17. Q. Zhang, T. Zhang, Y. Shi, B. Zhao, M. Wang, Q. Liu, J. Wang, K. Long, Y. Duan and P. Ning, J. CO 2 Util., 17, 10 (2017).

    Article  CAS  Google Scholar 

  18. P. Lu, C. Xing, H. Li, X. Gai, Q. Wei, L. Tan, C. Lu, W. Shen, R. Yang and N. Tsubaki, Int. J. Hydrogen Energy, 41, 10680 (2016).

    Article  CAS  Google Scholar 

  19. C. Tang, B. Sun, J. Sun, X. Hong, Y. Deng, F. Gao and L. Dong, Catal. Today, 281, 575 (2017).

    Article  CAS  Google Scholar 

  20. L. Wang, Y. Liu, M. Chen, Y. Cao, H. He, G. Wu, W. Dai and K. Fan, J. Catal., 246, 193 (2007).

    Article  CAS  Google Scholar 

  21. I. Haq and F. Haider, Mater. Lett., 63, 2355 (2009).

    Article  Google Scholar 

  22. D. Dollimore and D. Griffiths, J. Therm. Anal., 2, 229 (1970).

    Article  CAS  Google Scholar 

  23. M. A. Gabal, Thermochim. Acta, 402, 199 (2003).

    Article  CAS  Google Scholar 

  24. D. Dollimore, D. Griffths and D. Nicholson, J. Chem. Soc., 488, 2617 (1963).

    Article  Google Scholar 

  25. R. Yang, X. Yu, Y. Zhang, W. Li, N. Tsubaki, Fuel, 87, 443 (2008).

    Article  CAS  Google Scholar 

  26. J. Fei, Z. Hou, B. Zhu, H. Lou and X. Zheng, Appl. Catal-A: Gen., 304, 49 (2006).

    Article  CAS  Google Scholar 

  27. L. Hong, R. Nie, G. Wu and Z. Hou, Fuel, 154, 161 (2015).

    Article  Google Scholar 

  28. D. Kim, C. Yang, Y. Park, K. Kim, S. Jeong, J. Han and Y. Lee, Chem. Phys. Lett., 413, 135 (2015).

    Article  Google Scholar 

  29. J. Szanyi and D. Goodman, Catal. Lett., 10, 383 (1991).

    Article  CAS  Google Scholar 

  30. R. van Santen, P. van Leeuwen, J. Moulijn and B. Averill, Catalysis: An Integrated Approach, 5, 218 (1997).

    Google Scholar 

  31. K. Larmier, W.-C. Liao, S. Tada, E. Lam, R. Vérel, A. Bansode, A. Urakawa, A. Comas-Vives and C. Copéret, Angew. Chem. Int. Ed., 56, 2318 (2017).

    Article  CAS  Google Scholar 

  32. G. Chinchen, K. Waugh and D. Whan, Appl. Catal., 25, 101 (1986).

    Article  CAS  Google Scholar 

  33. P. Rasmussen, M. Kazuta and I. Chorkendorff, Surf. Sci., 318, 267 (1994).

    Article  CAS  Google Scholar 

  34. P. Rasmussen, P. Holmblad, T. Askgaard, C. Ovesen, P. Stoltze, J. Nørskov and I. Chorkendorff, Catal. Lett., 3-4, 373 (1994).

    Article  Google Scholar 

  35. J. Yoshihara and C. Campbell, J. Catal., 2, 776 (1996).

    Article  Google Scholar 

  36. J. Yoshihara, S. Parker, A. Schafer and C. Campbell, Catal. Lett., 4, 313 (1995).

    Article  Google Scholar 

  37. T. Fujitani, I. Nakamura, T. Watanabe, T. Uchijima and J. Nakamura, Catal. Lett., 35, 297 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Lu or Kai Tao.

Electronic supplementary material

11814_2017_278_MOESM1_ESM.pdf

CO2 hydrogenation to methanol over Cu/ZnO catalysts synthesized via a facile solid-phase grinding process using oxalic acid

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lu, P., Xu, D. et al. CO2 hydrogenation to methanol over Cu/ZnO catalysts synthesized via a facile solid-phase grinding process using oxalic acid. Korean J. Chem. Eng. 35, 110–117 (2018). https://doi.org/10.1007/s11814-017-0278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0278-8

Keywords