Skip to main content
Log in

Cu/ZnO/AlOOH catalyst for methanol synthesis through CO2 hydrogenation

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Catalytic conversion of CO2 to methanol is gaining attention as a promising route to using carbon dioxide as a new carbon feedstock. AlOOH supported copper-based methanol synthesis catalyst was investigated for direct hydrogenation of CO2 to methanol. The bare AlOOH catalyst support was found to have increased adsorption capacity of CO2 compared to conventional Al2O3 support by CO2 temperature-programmed desorption (TPD) and FT-IR analysis. The catalytic activity measurement was carried out in a fixed bed reactor at 523 K, 30 atm and GHSV 6,000 hr−1 with the feed gas of CO2/H2 ratio of 1/3. The surface basicity of the AlOOH supported Cu-based catalysts increased linearly according to the amount of AlOOH. The optimum catalyst composition was found to be Cu : Zn : Al=40 : 30 : 30 at%. A decrease of methanol productivity was observed by further increasing the amount of AlOOH due to the limitation of hydrogenation rate on Cu sites. The AlOOH supported catalyst with optimum catalyst compositions was slightly more active than the conventional Al2O3 supported Cu-based catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Hartmann, Global Physical Climatology (2nd Ed.) (2016).

    Google Scholar 

  2. D. Bratt, Catalytic CO 2 Hydrogenation-Literature Review: Technology Development Since 2014 (2016).

    Google Scholar 

  3. Storing CO2through Enhanced Oil Recovery-Combining EOR with CO2storage (EOR+) for profit, OECD/IEA (2015).

  4. G.A. Olah, G.K. S. Prakash and A. Goeppert, J. Am. Chem. Soc., 133, 12881 (2011).

    Article  CAS  Google Scholar 

  5. M. Patart, France Patent, FR540343 (1921).

    Google Scholar 

  6. E. Audibert, Fuel Sci. Pract., 5, 170 (1926).

    CAS  Google Scholar 

  7. P. K. Frolich, M. R. Fenske, P. S. Taylor and C. A. Southwick, Ind. Eng. Chem., 20, 1327 (1928).

    Article  CAS  Google Scholar 

  8. D. Cornthwaite, US Patent, 3,923,694 (1974).

    Google Scholar 

  9. P. Davies and F. F. Snowdon, US Patent 3,326,956 (1967).

    Google Scholar 

  10. J. T. Gallagher and J. M. Kidd, Patent GB1159035 (1969).

    Google Scholar 

  11. K. Klier, V. Chatikavanij, R. G. Herman and G. W. Simmons, J. Catal., 74, 343 (1981).

    Article  Google Scholar 

  12. G. C. Chinchen, P. J. Denny, D. G. Parker, M. S. Spencer and D. A. Whan, Appl. Catal., 30, 333 (1987).

    Article  CAS  Google Scholar 

  13. K. C. Waugh, Catal. Lett., 142, 1153 (2012).

    Article  CAS  Google Scholar 

  14. J. Nakamura, Y. Choi and T. Fujitani, Top. Catal., 22, 277 (2003).

    Article  CAS  Google Scholar 

  15. M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R. W. Fischer, J. K. Nørskov and R. Schlögl, Science, 336, 893 (2012).

    Article  CAS  Google Scholar 

  16. F. Studt, M. Behrens, E. L. Kunkes, N. Thomas, S. Zander, A. Tarasov, J. Schumann, E. Frei, J. B. Varley, F. Abild-Pedersen, J. K. Nørskov and Robert Schlögl, Chem. Cat. Chem., 7, 1105 (2015).

    CAS  Google Scholar 

  17. G. Bonura, M. Cordaro, C. Cannilla, F. Arena and F. Frusteri, Appl. Catal. B Enviorn., 152–153, 152 (2014).

    Article  Google Scholar 

  18. D. Li, N. Ichikuni, S. Shimazu and T. Uematsu, Appl. Catal. A Gen., 172, 351 (1998).

    Article  CAS  Google Scholar 

  19. E. Heracleous, E. T. Liakakou, A. A. Lappas and A. A. Lemonidou, Appl. Catal. A Gen., 455, 145 (2013).

    Article  CAS  Google Scholar 

  20. P. Raybaud, M. Digne, R. Iftimie, W. Wellens, P. Euzen and H. Toulhoat, J. Catal., 201, 236 (2001).

    Article  CAS  Google Scholar 

  21. L. Farkas, P. Gad and P. E. Werner, Mater. Res. Bull., 12, 1213 (1977).

    Article  CAS  Google Scholar 

  22. G.K. Priya, P. Padmaja, K. G. K. Warrier, A. D. Damodaran and G. Aruldhas, J. Mater. Sci. Lett., 16, 1584 (1997).

    Article  CAS  Google Scholar 

  23. C. Morterra, C. Emanuel, G. Cerrato and G. Magnacca, J. Chem. Soc.-Faraday Trans., 88, 339 (1992).

    Article  CAS  Google Scholar 

  24. K. A. Wickersheim and G. K. Korpi, J. Chem. Phys., 42, 579 (1965).

    Article  CAS  Google Scholar 

  25. J. J. Fripiat, H. J. Bosmans and P. G. Rouxhet, J. Phys. Chem., 71, 1097 (1967).

    Article  CAS  Google Scholar 

  26. D. Mazza, M. Vallino and G. Busca, J. Amer. Ceram. Soc., 75, 1929 (1992).

    Article  CAS  Google Scholar 

  27. P. McMillan and B. Piriou, J. Non. Cryst. Solids, 53, 279 (1982).

    Article  CAS  Google Scholar 

  28. C. Morterra, G. Ghiotti, F. Boccuzzi and S. Coluccia, J. Catal., 51, 299 (1978).

    Article  CAS  Google Scholar 

  29. R. Philipp and K. Fujimoto, J. Phys. Chem., 96, 9035 (1992).

    Article  CAS  Google Scholar 

  30. J. I. Di Cosimo, V. K. Díez, M. Xu, E. Iglesia and C. R. Apesteguía, J. Catal., 178, 499 (1998).

    Article  Google Scholar 

  31. V. P. Pakharukova, A. S. Shalygin, E. Y. Gerasimov, S. V. Tsybulya and O. N. Martyanov, J. Sol. State Chem., 233, 294 (2016).

    Article  CAS  Google Scholar 

  32. R. Burch, S. E. Golunski and M. S. Spencer, J. Chem. Soc.-Faraday Trans., 86, 2683 (1990).

    Article  Google Scholar 

  33. G. Wu, X. Wang, W. Wei and Y. Sun, Appl. Catal. A Gen., 377, 107 (2010).

    Article  CAS  Google Scholar 

  34. Y. Liu, K. Sun, H. Ma, X. Xu and X. Wang, Catal. Comm., 11, 880 (2010).

    Article  CAS  Google Scholar 

  35. P. Gao, F. Li, N. Zhao, F. Xiao, W. Wei, L. Zhong and Y. Sun, Appl. Catal. A Gen., 468, 442 (2013).

    Article  CAS  Google Scholar 

  36. A. Le Valant, C. Comminges, C. Tisseraud, C. Canaff, L. Pinard and Y. Pouilloux, J. Catal., 324, 41 (2015).

    Article  Google Scholar 

  37. C. Tisseraud, C. Comminges, T. Belin, H. Ahouari, A. Soualah, Y. Pouilloux and A. Le Valant, J. Catal., 330, 533 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HakJoo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, E., Song, K., An, S. et al. Cu/ZnO/AlOOH catalyst for methanol synthesis through CO2 hydrogenation. Korean J. Chem. Eng. 35, 73–81 (2018). https://doi.org/10.1007/s11814-017-0230-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0230-y

Keywords

Navigation