Skip to main content
Log in

Computational fluid dynamics simulation of hydrodynamics in an uncovered unbaffled tank agitated by pitched blade turbines

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Computational fluid dynamics (CFD) simulations were applied for evaluating the hydrodynamics characteristics in an uncovered unbaffled tank agitated by pitched blade turbines. A volume of fluid (VOF) method along with a Reynolds stress model (RSM) was used to capture the gas-liquid interface and the turbulence flow in the tank. The reliability and accuracy of the simulations are verified. The simulation results show that the vortex can be divided into central zone and peripheral zone, and flow field in the tank can be divided into forced vortex flow region and free vortex flow region. With the increase of impeller speed, the vortex becomes deeper, while the critical radius of the two zones keeps almost unchanged. The impeller clearance and the rotational direction have little effect on the vortex shape. The vortex becomes deeper with increasing of the impeller diameter or the blade angles at the same rotational speed. Power number is little influenced by the impeller speed, and decreases by about 30% when impeller diameter varies from 0.25T to 0.5T. When blade angle varies from 30° to 90°, power number increases by about 2.32-times. Power number in uncovered unbaffled tank is much smaller than that in baffled tank, but is very close to that in a covered unbaffled tank. The discrepancy of power number in uncovered unbaffled tank and that in covered unbaffled tank is less than 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Lamberto, F. J. Muzzil, P.D. Swanson and A.L. Tonkovich, Chem. Eng. Sci., 51, 733 (1996).

    Article  CAS  Google Scholar 

  2. M. M. Álvarez, P. E. Arratia and F. J. Muzzio, Can. J. Chem. Eng., 80, 546 (2002).

    Article  Google Scholar 

  3. Y. Y. Hu, Z. Liu, J. C Yang and Y. Cheng, Chinese J. Chem. Eng., 61, 2517 (2010).

    CAS  Google Scholar 

  4. J.M. Rousseaux, H. Muhr and E. Plasari, Can. J. Chem. Eng., 79, 697 (2001).

    Article  CAS  Google Scholar 

  5. D. Hekmat, D. Hebel, H. Schmid and D. Weuster-Botz, Process Biochem., 42, 1649 (2007).

    Article  CAS  Google Scholar 

  6. A.R. Rao and B. Kumar, J. Chem. Technol. Biotechnol., 82, 101 (2007).

    Article  CAS  Google Scholar 

  7. F. Rieger, P. Ditl and V. Noval, Chem. Eng. Sci., 34, 397 (1979).

    Article  CAS  Google Scholar 

  8. A.R. Rao, B. Kumar and A. K. Patel, Science Asia, 35, 183 (2009).

    Article  CAS  Google Scholar 

  9. M. Zlokarnik, Chem. Eng. Technol., 43, 1028 (1971).

    Google Scholar 

  10. M. Ciofalo, A. Brucato, F. Grisafi and N. Torraca, Chem. Eng. Sci., 51, 3357 (1996).

    Article  Google Scholar 

  11. J. Markopoulos and E. Kontogeorgaki, Chem. Eng. Technol., 18, 68 (1995).

    Article  CAS  Google Scholar 

  12. S. Nagata, Mixing: Principles and Applications, Wiley, New York (1975).

    Google Scholar 

  13. F. Grisafi, A. Brucato and L. Rizzuti, Inst. Chem. Eng. Symp. Ser., 136, 571 (1994).

    CAS  Google Scholar 

  14. J.N. Haque, T. Mahmud and K. J. Roberts, Ind. Eng. Chem. Res., 45, 2881 (2006).

    Article  CAS  Google Scholar 

  15. J.N. Haque, T. Mahmud, K. J. Roberts, J.K. Liang, G. White, D. Wilkinson and D. Rhodes, Can. J. Chem. Eng., 89, 745 (2011).

    Article  CAS  Google Scholar 

  16. F. Scargiali, A. Busciglio, F. Grisafi, A. Tamburini, G. Micale and A. Brucato, Ind. Eng. Chem. Res., 52, 14998 (2013).

    Article  CAS  Google Scholar 

  17. A.R. Rao, A. Kumar Patel and B. Kumar, J. Chem. Technol. Biotechnol., 85, 805 (2010).

    Article  CAS  Google Scholar 

  18. A.R. Rao and B. Kumar, J. Hydraul. Div., Am. Soc. Civ. Eng., 135, 38 (2009).

    Article  Google Scholar 

  19. M. Assirelli, W. Bujalski, E. Archie and A.W. Nienow, Chem. Eng. Sci., 63, 35 (2008).

    Article  CAS  Google Scholar 

  20. A. Busciglio, F. Grisafi, F. Scargiali and A. Brucato, Chem. Eng. J., 254, 201 (2014).

    Article  Google Scholar 

  21. G.M.C. Glover and J. J. Fitzpatrick, Chem. Eng. J., 127, 11 (2007).

    Article  CAS  Google Scholar 

  22. F. L. Yang and S. J. Zhou, Chem. Biochem. Eng. Q., 29, 395 (2015).

    Article  CAS  Google Scholar 

  23. N. Lamarque, B. Zoppé, Q. Lebaigue, Y. Dolias, M. Bertrand and F. Ducros, Chem. Eng. Sci., 65, 4307 (2010).

    Article  CAS  Google Scholar 

  24. C.G. Speziale, S. Sarkar and T. B. Gatski, J. Fluid Mech., 277, 245 (1991).

    Article  Google Scholar 

  25. F. Nemdili, A. Azzi, G. Theodoridis and B.A. Jubran, Heat Transfer. Eng., 11, 950 (2008).

    Article  Google Scholar 

  26. C. Vallée, T. Höhne, H. M. Prasser and T. Sühnel, Nucl. Eng. Des., 238, 637 (2008).

    Article  Google Scholar 

  27. A. Tamburini, A. Cipollina, G. Micale, F. Scargiali and A. Brucato, Ind. Eng. Chem. Res., 55, 7535 (2016).

    Article  CAS  Google Scholar 

  28. J. Markopoulos and E. Kontogeorgaki, Chem. Ing. Technol., 65, 839 (1993).

    Article  CAS  Google Scholar 

  29. F. Scargiali, A. Busciglio, F. Grisafi and A. Brucato, Biochem. Eng. J., 82, 41 (2014).

    Article  CAS  Google Scholar 

  30. Z. Driss, G. Bouzgarrou, W. Chtourou, H. Kchaou and M. S. Abid, Eur. J. Mech. B-Fluid, 29, 236 (2010).

    Article  Google Scholar 

  31. P.M. Armenante, C. Luo, C. C. Chou, I. Fort and J. Medek, Chem. Eng. Sci., 20, 3483 (1997).

    Article  Google Scholar 

  32. A. Tamburini, A. Brucato, A. Busciglio, A. Cipollina, F. Grisafi, G. Micale, F. Scargiali and G. Vella, Ind. Eng. Chem. Res., 53, 9587 (2014).

    Article  CAS  Google Scholar 

  33. R. L. Bates, P.L. Fondy and R.R. Corpstein, I. and Ec Proc. Des. Dev., 2, 310 (1963).

    Article  CAS  Google Scholar 

  34. V. B. Rewatkar, K.S.M.S. Raghava Rao and J.B. Joshi, Chem. Eng. Commun., 88, 69 (1990).

    Article  CAS  Google Scholar 

  35. G. Montante, K. C. Lee, A. Brucato and M. Yianneskis, Chem. Eng. Sci., 56, 3751 (2001).

    Article  CAS  Google Scholar 

  36. S. Ibrahim and A.W. Nienow, Trans. IChemE. Eng. Res. Des., 73, 485 (1995).

    CAS  Google Scholar 

  37. K. Yapici, B. Karasozen, M. Schäfer and Y. Uludag, Chem. Eng. Process., 47, 1340 (2008).

    Article  Google Scholar 

  38. L. Smit and J. During, Vortex geometry in stirred vessels, Proceedings of the 7th European Congress on Mixing, Belgium, Bruges 2: 633 (1991).

    Google Scholar 

  39. C.Y. Ge, J. J. Wang, X. P. Gu and L. F. Feng, Chem. Eng. Res. Des., 92, 1027 (2014).

    Article  CAS  Google Scholar 

  40. D. Chapple, S. M. Kresta, A. Wall and A. Afacan, Trans. IChem. E., 80, Part A, 364 (2002).

    Article  CAS  Google Scholar 

  41. M. Moštek, A. Kukuková, M. Jahoda and V. Machon, Chem. Pap., 59, 380 (2005).

    Google Scholar 

  42. Cz. Kuncewicz and M. Pietrzykowski, Chem. Eng. Sci., 56, 4659 (2001).

    Article  CAS  Google Scholar 

  43. F. Scargiali, A. Tamburini, G. Caputo and G. Micale, Chem. Eng. Res. Des., 123, 99 (2017).

    Article  CAS  Google Scholar 

  44. A. Le Lan and H. Angelino, Chem. Eng. Sci., 27, 1969 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangchao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, J., Feng, L. et al. Computational fluid dynamics simulation of hydrodynamics in an uncovered unbaffled tank agitated by pitched blade turbines. Korean J. Chem. Eng. 34, 2811–2822 (2017). https://doi.org/10.1007/s11814-017-0208-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0208-9

Keywords

Navigation