Skip to main content
Log in

Three-dimensional CFD study of conical spouted beds containing heavy particles: Design parameters

  • Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The flow behavior of conical spouted beds containing heavy particles that occurs in chemical vapor deposition (CVD) was investigated using the computational fluid dynamics (CFD) approach. A fully Eulerian description of solid and gas phases flows in 3D was used in these simulations. The hydrodynamics parameters including particle velocity, solid flux, and solid volume fraction profiles at different bed levels were evaluated, and the overall behavior of solid particles in the beds was studied. The results showed close agreement with the corresponding experimental data. The effects of cone angle, static bed height, and cone bottom diameter on the hydrodynamic behavior of heavy particles were analyzed and the results were presented. In addition, the effects of flat wall of semi-conical spouted bed (half-column) on the CFD results and performance of the spouted bed were investigated. The hydrodynamic results for the full bed were quite different from those for the half bed geometries. It was also found that the conical spouted bed with the angle of 45° leads to the roughly stable spouting compared to the 30° angle bed. The CFD model also showed that the conical-cylindrical spouted beds operating with heavy particles has the potential for periodic occurrence of choking in the spout zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. E. Gishler, Can. J. Chem. Eng., 61, 267 (1983).

    Article  Google Scholar 

  2. A. Kmiec and R.G. Szafran, Kinetics of Drying of Microspherical Particles in a Spouted Bed Dryer with a Draft Tube, In Proceedings of the 12th International Drying Symposium (IDS 2000), Elsevier Science B.V.: Amsterdam (2000).

    Google Scholar 

  3. D. J. E. Harvie, T.A.G. Langrish and D. F.A. Fletcher, Trans. Inst. Chem. Eng., 80, 163 (2002).

    Google Scholar 

  4. H. Ichikawa, M. Arimoto and Y. Fukumori, Powder Technol., 130, 189 (2003).

    Article  CAS  Google Scholar 

  5. S. I. Al-Mayman and S. M. Al-Zahrani, Fuel Process Technol., 80, 169 (2003).

    Article  CAS  Google Scholar 

  6. M. Khoshnoodi and F. J. Weinberg, Combust. Flame, 33, 11 (1978).

    Article  CAS  Google Scholar 

  7. S.R. A. Kersten, W. Prins, B. van der Drift and W. P. M. van Swaaij, Chem. Eng. Sci., 58, 725 (2003).

    Article  CAS  Google Scholar 

  8. C. Luo, K. Aoki, S. Uemiya and T. Kojima, Fuel Process Technol., 55, 193 (1998).

    Article  CAS  Google Scholar 

  9. G. Lopez, J. Alvarez, M. Amutio, A. Arregi, J. Bilbao and M. Olazar, Energy, 107, 493 (2016).

    Article  CAS  Google Scholar 

  10. G. Kulah, S. Sari and M. Koksal, Ind. Eng. Chem. Res., 55, 3131 (2016).

    Article  CAS  Google Scholar 

  11. X. Liu, W. Zhong, X. Jiang and B. Jin, AIChE J., 61, 58 (2015).

    Article  CAS  Google Scholar 

  12. L. Qian, Y. Lu, W. Zhong, X. Chen, B. Ren and B. Jin, Can. J. Chem. Eng., 91, 1793 (2013).

    CAS  Google Scholar 

  13. V. S. Sutkar, N. G. Deen, A.V. Patil, F. E. A. J. Peters, V. Salikov, S. Heinrich, S. Antonyuk and J. A. M. Kuipers, AIChE J., 61, 1146 (2015).

    Article  CAS  Google Scholar 

  14. X. Chen, B. Ren, Y. Chen, W. Zhong, D. Chen, Y. Lu and B. Jin, Can. J. Chem. Eng., 91, 1762 (2013).

    CAS  Google Scholar 

  15. J. F. Saldarriaga, R. Aguado, H. Altzibar, A. Atxutegi, J. Bilbao and M. Olazar, J. Taiwan Inst. Chem. Eng., 60, 509 (2016).

    Article  CAS  Google Scholar 

  16. S. Azizi, S. H. Hosseini, M. Moraveji and G. Ahmadi, Particuology, 8, 415 (2010).

    Article  CAS  Google Scholar 

  17. M. Fattahi, S. H. Hosseini and G. Ahmadi, Appl. Therm. Eng., 105, 385 (2016).

    Article  Google Scholar 

  18. S. H. Hosseini, G. Ahmadi and M. Olazar, Powder Technol., 246, 303 (2013).

    Article  CAS  Google Scholar 

  19. S. H. Hosseini, G. Ahmadi and M. Olazar, J. Taiwan Inst. Chem. Eng., 45, 2140 (2014).

    Article  CAS  Google Scholar 

  20. S. H. Hosseini, M. Fattahi and G. Ahmadi, J. Taiwan Inst. Chem. Eng., 58, 107 (2016).

    Article  CAS  Google Scholar 

  21. S. H. Hosseini, Prog. Comput. Fluid Dyn., 16, 78 (2016).

    Article  Google Scholar 

  22. S.H. Hosseini, G. Ahmadi, B. S. Razavi and W. Zhong, Energy Fuels, 24, 6086 (2010).

    Article  CAS  Google Scholar 

  23. S.H. Hosseini, M. Fattahi and G. Ahmadi, Powder Technol., 279, 301 (2015).

    Article  CAS  Google Scholar 

  24. S. Moradi, A. Yeganeh and M. Salimi, Appl. Math. Model, 37, 1851 (2013).

    Article  Google Scholar 

  25. M. J. San Jose, M. Olazar, S. Alvarez, A. Morales and J. Bilbao, Ind. Eng. Chem. Res., 44, 193 (2005).

    Article  CAS  Google Scholar 

  26. M. J. San Jose, S. Alvarez, A. Morales, M. Olazar and J. Bilbao, Chem. Eng. Res. Des., 84, 487 (2006).

    Article  CAS  Google Scholar 

  27. J. Zhou and D. D. Bruns, Can. J. Chem. Eng., 90, 558 (2012).

    Article  CAS  Google Scholar 

  28. S. Pannala, C. S. Daw, C. E. A. Finney, D. Boyalakuntla, M. Syamlal and T. J. O’Brien, Chem. Vapor Depos., 13, 481 (2007).

    Article  CAS  Google Scholar 

  29. S. Ş. Lüle, U. Colak, M. Koksal and G. Kulah, Chem. Vap. Depos., 21, 1 (2015).

    Article  Google Scholar 

  30. N. Setarehshenas, S. H. Hosseini, M. Nasr Esfahany and G. Ahmadi, J. Taiwan Inst. Chem. Eng., 64, 146 (2016).

    Article  CAS  Google Scholar 

  31. D.G. Schaeffer, J. Differ. Equat., 66, 19 (1987).

    Article  Google Scholar 

  32. C.K.K. Lun, S.B. Savage, D. J. Jeffrey and N. Chepurniy, J. Fluid Mech., 140, 223 (1984).

    Article  Google Scholar 

  33. L. Huilin, D. Gidaspow, J. Bouillard and L. Wentie, Chem. Eng. J., 95, 1 (2003).

    Article  Google Scholar 

  34. P.C. Johnson and R. Jackson, J. Fluid Mech., 176, 67 (1987).

    Article  CAS  Google Scholar 

  35. S.H. Hosseini, R. Rahimi, M. Zivdar and A. Samimi, Korean J. Chem. Eng., 26, 1405 (2009).

    Article  CAS  Google Scholar 

  36. R. Bettega, C. A. da Rosa, R. G. Corrêa and J.T. Freire, Ind. Eng. Chem. Res., 48, 11181 (2009).

    Article  CAS  Google Scholar 

  37. Y. Behjat, S. Shahhosseini and M. Ahmadi Marvast, Int. Commun. Heat Mass, 37, 935 (2010).

    Article  CAS  Google Scholar 

  38. M. J. San Jose, M. Olazar, S. Alvarez and J. Bilbao, Ind. Eng. Chem. Res., 37, 2553 (1998).

    Article  CAS  Google Scholar 

  39. W. Du, X. Bao, J. Xu and W. Wei, Chem. Eng. Sci., 61, 1401 (2006).

    Article  CAS  Google Scholar 

  40. S.H. Hosseini, M. Karami, M. Olazar, R. Safabakhsh and M. Rahmati, Ind. Eng. Chem. Res., 53, 12639 (2014).

    Article  CAS  Google Scholar 

  41. K. B. Mathur and P.E. Gishler, AIChE J., 1, 157 (1955).

    Article  CAS  Google Scholar 

  42. M. Olazar, M. J. San José, A.T. Aguayo, J. M. Arandes and J. Bilbao, Chem. Eng. J. Biochem. Eng., 55, 27 (1994).

    Article  CAS  Google Scholar 

  43. M. Olazar, M. J. San Jose, S. A. Morales and J. Bilbao, Ind. Eng. Chem. Res., 37, 4520 (1998).

    Article  CAS  Google Scholar 

  44. W. Sobieski, Dry Technol., 26, 1438 (2008).

    Article  Google Scholar 

  45. R. Béttega, R. G. Corrêa and J.T. Freire, Study of the Scale-Up Relations for Spouted Beds using CFD, 19th Int. Cong. Mech. Eng., Brasília DF 5-9 (2007).

    Google Scholar 

  46. Y. L. He, Hydrodynamic and Scale-up Studies of Spouted Beds, University of British Columbia, Ph.D. Thesis (1995).

    Google Scholar 

  47. L. Huilin, H. Yurong, L. Wentie, D. Jianmin, D. Gidaspow and J. Bouillard, Chem. Eng. Sci., 59, 865 (2004).

    Article  Google Scholar 

  48. S. Sari, A. Polat, D. Zaglanmis, G. Kulah and M. Koksal, Hydrodynamics of Conical Spouted Beds with High Density Particles, Proceedings of 10th International Conference on Circulating Fluidized Beds and Fluidization Technology, Sun River, Idaho, U.S.A. (2011).

    Google Scholar 

  49. S. Sari, G. Kulah and M. Koksal, Exp. Therm. Fluid Sci., 40, 132 (2012).

    Article  CAS  Google Scholar 

  50. D.C. Sau and K. C. Biswal, Appl. Math. Model, 35, 2265 (2011).

    Article  Google Scholar 

  51. S. Liyan, X. Weiguo, L. Guodong, S. Dan, L. Huilin, T. Yanjia and L. Dan, Chem. Eng. Sci., 84, 170 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Hossein Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setarehshenas, N., Hosseini, S.H., Esfahany, M.N. et al. Three-dimensional CFD study of conical spouted beds containing heavy particles: Design parameters. Korean J. Chem. Eng. 34, 1541–1553 (2017). https://doi.org/10.1007/s11814-017-0024-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0024-2

Keywords

Navigation