Skip to main content
Log in

Characteristics of pressure drop during the pulse-jet cleaning of a ceramic filter for high temperature and high pressure

  • Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The operation range of the pressure drop between the peak and the base line during the pulse-jet cleaning of a ceramic filter relates closely with the grouping number of the filter elements in the filter unit, as well as the design and the operation conditions of the pulse cleaning system. A semi-empirical model was developed to predict the pressure drop of the filter unit versus the operation time according to the grouping numbers of the total filter elements in this study. The model is based on theoretical considerations and the application of the experimental data to develop a simple equation, which should be useful for preliminary design and operational inspection. The semi-empirical formula predicts the operational values of the pressure drop between the peak and the base line, which suggests the guideline for grouping of the filter elements for the pulse-jet cleaning. Peak pressure drop decreases gradually and then finally approaches a minimum stable value as the number of the cleaning group increases. Otherwise, the base line pressure drop increases gradually and then finally approaches a maximum stable value as the number of the cleaning group increases. Thus, the gaps between the peak and the base line pressure drop become narrow as the number of cleaning group increases. This phenomenon of gap reduction is desirable for the pulse cleaning of the filter element as it reduces the pulse cleaning load. Moreover, pulse cleaning becomes more effective as the number of the cleaning groups increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. K. Seville, S. Ivatt and G. K. Burnard, High Temperature Gas Cleaning, Ed. by E. Schmidt et al., University of Karlsruhe, 23 (1996).

  2. S. Heidenreich, Fuel, 104, 83 (2013).

    Article  CAS  Google Scholar 

  3. B. Dou, C. Wang, H. Chen, Y. Song, B. Xie, Y. Xu and C. Tan, Chem. Eng. Res. Design, 90, 1901 (2012).

    Article  CAS  Google Scholar 

  4. K. Schulz and M. Durst, Filtration and Separation, 31 (1), 25 (1994).

    Article  CAS  Google Scholar 

  5. H. Chi, L. Yu, J. H. Choi and Z. Ji, Chinese J. Chem. Eng., 16 (2), 306 (2008).

    Article  CAS  Google Scholar 

  6. Z. Ji, M. Shi and D. Fuxin, Powder Technol., 139, 200 (2004).

    Article  CAS  Google Scholar 

  7. I. Schildermans, J. Baeyens and K. Smolders, Filtration and Separation, 41 (5), 26 (2004).

    Article  CAS  Google Scholar 

  8. A. R. Mazaheri and G. Ahmadi, Adv. Powder Technol., 17 (6), 623 (2006).

    Article  CAS  Google Scholar 

  9. Z. Ji, S. Peng and L. Tan, Chinese J. Chem. Eng., 11 (6), 626 (2003).

    CAS  Google Scholar 

  10. G. Ahmadi and D. H. Smith, Aerosol Sci. Technol., 36, 665 (2002).

    Article  CAS  Google Scholar 

  11. J. H. Choi, Y. G. Seo and J. H. Chung, Powder Technol., 114, 129 (2001).

    Article  CAS  Google Scholar 

  12. S. K. Grannell and J. P. K. Seville, Proceedings of the 4th International Symposium on Gas Cleaning at High Temperatures, A. Dittler, et al. Ed., Karlsruhe, Germany, 96 (1999).

  13. D. H. Smith, V. Powell and G. E. I. Ahmadi, Powder Technol., 94, 15 (1997).

    Article  CAS  Google Scholar 

  14. X. Simon, S. Chazelet, D. Thomas, D. Bemer and R. Regnier, Powder Technol., 172, 67 (2007).

    Article  CAS  Google Scholar 

  15. J. H. Choi and G. Park, Energy Eng. J., 8 (1), 143 (1999).

    Google Scholar 

  16. J. H. Choi, S. J. Ha and Y. O. Park, Korean J. Chem. Eng., 19 (4), 711 (2002).

    Article  CAS  Google Scholar 

  17. J. H. Choi, S. J. Ha, Y. C. Bak and Y. O. Park, Korean J. Chem. Eng., 19 (6), 1085 (2002).

    Article  CAS  Google Scholar 

  18. J. H. Choi, Y. C. Bak, H. J. Jang, J. H. Kim and J. H. Kim, Korean J. Chem. Eng., 21 (3), 726 (2004).

    Article  CAS  Google Scholar 

  19. Y. Endo, D.-R. Chen and D. Y. H. Pui, Powder Technol., 98, 241 (1998).

    Article  CAS  Google Scholar 

  20. J. H. Choi, S. J. Ha and H. J. Jang, Powder Technol., 140, 106 (2004).

    Article  CAS  Google Scholar 

  21. A. Gupta, V. J. Novick, P. Bisawas and P. R. Monson, Aerosol Sci. Technol., 19, 94 (1993).

    Article  CAS  Google Scholar 

  22. R. Dennis and J. A. Dirgo, Filtration and Separation, 18, 394 (1981).

    Google Scholar 

  23. C. R. N. Silva, V. S. Negrini, J. R. Aguiar and M. L. Coury, Powder Technol., 101, 165 (1999).

    Article  CAS  Google Scholar 

  24. J. H. Kim, Y. Liang, K. M. Sakong, J. H. Choi and Y. C. Bak, Powder Technol., 181, 67 (2008).

    Article  CAS  Google Scholar 

  25. M. L. Aguiar and J. R. Coury, Ind. Eng. Chem. Res., 35, 3673 (1996).

    Article  CAS  Google Scholar 

  26. M. lupion, B. Alonso-Farinas, M. Rodriguez-Galan and B. Navarrete, Chem. Eng. Processing, 66, 12 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Hong Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Kim, YC. & Choi, JH. Characteristics of pressure drop during the pulse-jet cleaning of a ceramic filter for high temperature and high pressure. Korean J. Chem. Eng. 33, 726–734 (2016). https://doi.org/10.1007/s11814-015-0211-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0211-y

Keywords

Navigation