Skip to main content

Advertisement

Log in

Optimal strategy for carbon capture and storage infrastructure: A review

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To effectively reduce CO2, CO2 mitigation technologies should be employed tactically. This paper focuses on carbon capture and storage (CCS) as the most promising CO2 reduction technology and investigates how to establish CCS strategy suitably. We confirm a major part of the optimal strategy for CCS infrastructure planning through a literature review according to mathematical optimization criteria associated with facility location models. In particular, the feasibility of large scale CCS infrastructure is evaluated through economic, environmental, and technical assessment. The current state-of-the-art optimization techniques for CCS infrastructure planning are also addressed while taking numerous factors into account. Finally, a list of issues for future research is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEA, Energy Technology Perspectives (2006).

  2. B. Metz, IPCC special report on carbon dioxide capture and storage 2005: Cambridge University Press.

  3. J. H. Han and I. B. Lee, Ind. Eng. Chem. Res., 50(10), 6297 (2011).

    Article  CAS  Google Scholar 

  4. M.T. Melo, S. Nickel and F. Saldanha-da-Gama, European J. Operational Res., 196(2), 401 (2009).

    Article  Google Scholar 

  5. J. P. Jakobsen, A. Brunsvold, J. Husebye, E. S. Hognes, T. Myhrvold, P. Friis-Hansen, E. A. Hektor and A. Torvanger, Comprehensive assessment of CCS chains — Consistent and transparent methodology, Amsterdam (2011).

  6. A. B. Rao and E. S. Rubin, Environ. Sci. Technol., 36(20), 4467 (2002).

    Article  CAS  Google Scholar 

  7. S. T. McCoy and E. S. Rubin, Int. J. Greenhouse Gas Control, 2(2), 219 (2008).

    Article  CAS  Google Scholar 

  8. A. B. Rao, E. S. Rubin, D.W. Keith and M. M. Granger, Energy Policy, 34(18), 3765 (2006).

    Article  Google Scholar 

  9. D. L. McCollum and J. M. Ogden, Techno-Economic Models for Carbon Dioxide Compression, Transport and Storage & Correlations for estimating Carbon Dioxide Density and Viscosity, UCDITS-RR-06-14 (2006).

  10. U. Zahid, Y. Lim, J. Jung and C. Han, Korean J. Chem. Eng., 28(3), 674 (2011).

    Article  CAS  Google Scholar 

  11. M. Lauer, Methodology guideline on techno economic assessment (TEA), Workshop WP3B Economics, Methodology Guideline (2008).

  12. R.B. Bey, R. H. Doersch and J. H. Patterson, Project Management Quarterly, 12(2), 35 (1981).

    Google Scholar 

  13. B. H. Bakken and I. S. Velken, IEEE Transactions on Energy Conversion, 23(3), 824 (2008).

    Article  Google Scholar 

  14. R. Svensson, M. Odenberger, F. Johnsson and L. Strömberg, Energy Convers. Manage., 45(15–16), 2343 (2004).

    Article  CAS  Google Scholar 

  15. S. T. McCoy and E. S. Rubin, Models of CO 2 transport and storage costs and their importance in CCS cost estimates, Proceedings of the Fourth Annual Conference on Carbon Capture and Sequestration DOE/NETL (2005).

  16. M. van den Broek, A. Faaij and W. Turkenburg, Int. J. Greenhouse Gas Control, 2(1), 105 (2008).

    Article  Google Scholar 

  17. M. van den Broek, A. Ramírez, H. Groenenberg, F. Neele, P. Viebahn, W. Turkenburg and A. Faaij, Int. J. Greenhouse Gas Control, 4(2), 351 (2010).

    Article  Google Scholar 

  18. K. Damen, A. Faaij and W. Turkenburg, Int. J. Greenhouse Gas Control, 3(2), 217 (2009).

    Article  CAS  Google Scholar 

  19. R. S. Middleton and J.M. Bielicki, Energy Policy, 37(3), 1052 (2009).

    Article  Google Scholar 

  20. N. Johnson and J. Ogden. Detailed spatial modeling of carbon capture and storage (CCS) infrastructure deployment in the southwestern United States, Amsterdam (2011).

  21. M. J. Kuby, J.M. Bielicki and R. S. Middleton, International Regional Science Review, 34(3), 285 (2011).

    Article  Google Scholar 

  22. J. Morbee, J. Serpa and E. Tzimas, Optimal planning of CO 2 transmission infrastructure: The JRC InfraCCS tool, Amsterdam (2011).

  23. M. J. Kuby, R. S. Middleton and J. M. Bielicki. Analysis of cost savings from networking pipelines in CCS infrastructure systems, Amsterdam (2011).

  24. W. T. Chen, Y. P. Li, G. H. Huang, X. Chen and Y. F. Li, Appl. Energy, 87(3), 1033 (2010).

    Article  CAS  Google Scholar 

  25. W. Zhou, B. Zhu, S. Fuss, J. Szolgayová, M. Obersteiner and W. Fei, Appl. Energy, 87(7), 2392 (2010).

    Article  CAS  Google Scholar 

  26. A. Brunsvold, J. P. Jakobsen, J. Husebye and A. Kalinin, Case studies on CO 2 transport infrastructure: Optimization of pipeline network, effect of ownership, and political incentives, Amsterdam (2011).

  27. J.-H. Han and I.-B. Lee, Appl. Energy, 88(12), 5056 (2011).

    Article  Google Scholar 

  28. J.-H. Han and I.-B. Lee, Ind. Eng. Chem. Res., 50(23), 13435 (2011).

    Article  CAS  Google Scholar 

  29. J.-H. Han, J.-H. Ryu and I.-B. Lee, Ind. Eng. Chem. Res., 51(8), 3368 (2012).

    Article  CAS  Google Scholar 

  30. J.-H. Han, J.-U. Lee and I.-B. Lee, Ind. Eng. Chem. Res., 51(7), 2983 (2012).

    Article  CAS  Google Scholar 

  31. J.-H. Han, Y.-C. Ahn and I.-B. Lee, Appl. Energy, 95, 186 (2012).

    Article  Google Scholar 

  32. M. Ilyas, Y. Lim and C. Han, Korean J. Chem. Eng., 10.1007/s11814-011-0302-3 (2012).

  33. K. Park, D. Shin, G. Lee and E. Yoon, Korean J. Chem. Eng., DOI:10.1007/s11814-011-0295-y.

  34. M. van den Broek, E. Brederode, A. Ramírez, L. Kramers, M. van der Kuip, T. Wildenborg, W. Turkenburg and A. Faaij, Environmental Modelling & Software, 25(12) 1754 (2010).

    Article  Google Scholar 

  35. N. Sabio, M. Gadalla, G. Guillén-Gosálbez and L. Jiménez, Int. J. Hydrog. Energy, 35(13), 6836 (2010).

    Article  CAS  Google Scholar 

  36. J. A. Fava, R. Denison, B. Jones, M. A. Curran, B. Vigon and S. Selke, Society of Environmental Toxicology and Chemistry (SETAC) (1991).

  37. J.A. Fava, A technical framework for life-cycle assessments 1991: Society of Environmental Toxicology and Chemistry.

  38. F. Consoli and S. Workshop, Guidelines for life-cycle assessment: a code of practice 1993: Society of Environmental Toxicology and Chemistry (SETAC) Pensacola, FL.

  39. A. Azapagic, Chem. Eng. J., 73(1), 1 (1999).

    Article  CAS  Google Scholar 

  40. R. Heijungs and S. Sun, The International Journal of Life Cycle Assessment, 7(5), 314 (2002).

    Article  Google Scholar 

  41. M.G. a. R. Spriensma, The Eco-indicator 99 A damage oriented method for Life Cycle Impact Assessment (2000).

  42. G. Guillén-Gosálbez, J.A. Caballero and L. Jiménez, Ind. Eng. Chem. Res., 47(3), 777 (2008).

    Article  Google Scholar 

  43. G. Guillén-Gosálbez, F. D. Mele and I. E. Grossmann, AIChE J., 56(3), 650 (2010).

    Google Scholar 

  44. A. Hugo and E. N. Pistikopoulos, J. Cleaner Production, 13(15), 1471 (2005).

    Article  Google Scholar 

  45. I.R. Summerfield, S.H. Goldthorpe, K.A. Sheikh, N. Williams and P. Ball, Energy Convers. Manage., 36(6–9), 849 (1995).

    Article  CAS  Google Scholar 

  46. H. Waku, I. Tamura, M. Inoue and M. Akai, Energy Convers. Manage., 36(6–9), 877 (1995).

    Article  Google Scholar 

  47. M. K. Mann, P. L. Spath and K. R. Craig. Economic and life cycle assessment of an integrated biomass gasification combined cycle system (1996).

  48. A. B. Rao and E. S. Rubin, Environ. Sci. Technol., 36(20), 4467 (2002).

    Article  CAS  Google Scholar 

  49. L. Lidia, Energy Convers. Manage., 44(1), 93 (2003).

    Article  Google Scholar 

  50. E. Benetto, E. C. Popovici, P. Rousseaux and J. Blondin, Energy Convers. Manage., 45(18–19), 3053 (2004).

    Article  CAS  Google Scholar 

  51. P. L. Spath and M. K. Mann, Biomass Power and Conventional Fossil Systems with and without CO 2 Sequestration — Comparing the Energy Balance, Greenhouse Gas Emissions and Economics (2004).

  52. M. Carpentieri, A. Corti and L. Lombardi, Energy Convers. Manage., 46(11–12), 1790 (2005).

    Article  CAS  Google Scholar 

  53. H. H. Khoo and R. B. H. Tan, Energy Fuels, 20(5), 1914 (2006).

    Article  CAS  Google Scholar 

  54. H. H. Khoo and R.B. H. Tan, Environ. Sci. Technol., 40(12), 4016 (2006).

    Article  CAS  Google Scholar 

  55. N. A. Odeh, Life Cycle Emissions from Fossil Fuel Power Plants with Carbon Capture and Storagestorage (2007).

  56. P. Viebahn, J. Nitsch, M. Fischedick, A. Esken, D. Schüwer, N. Supersberger, U. Zuberbühler and O. Edenhofer, Int. J. Greenhouse Gas Control, 1(1), 121 (2007).

    Article  CAS  Google Scholar 

  57. E.G. Hertwich, M. Aaberg, B. Singh and A. H. Strømman, Chinese J. Chem. Eng., 16(3), 343 (2008).

    Article  CAS  Google Scholar 

  58. J. Koornneef, T. van Keulen, A. Faaij and W. Turkenburg, Int. J. Greenhouse Gas Control, 2(4), 448 (2008).

    Article  CAS  Google Scholar 

  59. N. A. Odeh and T. T. Cockerill, Energy Policy, 36(1): 367 (2008).

  60. M. Pehnt and J. Henkel, Int. J. Greenhouse Gas Control, 3(1), 49 (2009).

    Article  CAS  Google Scholar 

  61. A. Korre, Z. Nie and S. Durucan, Int. J. Greenhouse Gas Control, 4(2), 289 (2010).

    Article  CAS  Google Scholar 

  62. B. Singh, A. H. Strømman and E.G. Hertwich, Int. J. Greenhouse Gas Control, 5(4), 911 (2010).

    Article  Google Scholar 

  63. H.H. Khoo, J. Bu, R. L. Wong, S.Y. Kuan and P.N. Sharratt, Energy Procedia, 4, 2494 (2011).

    Article  CAS  Google Scholar 

  64. M. Akai, N. Nomura, H. Waku and M. Inoue, Energy, 22(2–3), 249 (1997).

    Article  CAS  Google Scholar 

  65. C. Wildbolz, Life cycle assessment of selected technologies for CO 2 transport and sequestration (2007).

  66. A.-C. Aycaguer, M. Lev-On and A. M. Winer, Energy Fuels, 15(2), 303 (2001).

    Article  CAS  Google Scholar 

  67. J. Suebsiri, M. Wilson and P. Tontiwachwuthikul, Ind. Eng. Chem. Res., 45(8), 2483 (2005).

    Article  Google Scholar 

  68. Joint Committee of the Royal Society of Canada and the Canadian Academy of Engineering on Health and Safety, in Health and Safety Policies: Guiding Principles for Risk Management (2007).

  69. K.A. Froot, D. S. Scharfstein and J.C. Stein, J. Finance, 48(5), 1629 (1993).

    Google Scholar 

  70. M. Carpenter, K. Kvien and J. Aarnes, Int. J. Greenhouse Gas Control, 5(4), 942 (2011).

    Article  CAS  Google Scholar 

  71. J. Koornneef, A. Ramírez, W. Turkenburg and A. Faaij, The environmental impact and risk assessment of CO 2 capture, transport and storage — An evaluation of the knowledge base, Progress in Energy and Combustion Science.

  72. E. Tzimas, A. Mercier, C.C. Cormos and S. D. Peteves, Energy Policy, 35(8), 3991 (2007).

    Article  Google Scholar 

  73. B. R. Strazisar, R. R. Anderson and C. M. White, Energy Fuels, 17(4), 1034 (2003).

    Article  CAS  Google Scholar 

  74. R. E. Britter, Annual Review of Fluid Mechanics, 21, 317 (1989).

    Article  Google Scholar 

  75. R. D. Aines, M. J. Leach, T.H. Weisgraber, M. D. Simpson, S. J. Friedmann and C. J. Bruton, Quantifying the potential exposure hazard due to energetic releases of CO 2 from a failed sequestration well, Washington DC (2009).

  76. K. Damen, A. Faaij and W. Turkenburg, Climatic Change, 74(1–3), 289 (2006).

    Article  CAS  Google Scholar 

  77. M. Karl, R. F. Wright, T. F. Berglen and B. Denby, Int. J. Greenhouse Gas Control, 5(3), 439 (2011).

    Article  CAS  Google Scholar 

  78. F. I. Khan and S. A. Abbasi, J. Loss Prevent. Proc. Ind., 12(5), 361 (1999).

    Article  Google Scholar 

  79. A. J. Beamon and T. J. Leckey, Trends in power plant operating costs, Issues in Midterm Analysis and Forecasting 1999 — Trends in Power Plant Operating Costs. EIA/DOE-0607(99) (1999).

  80. V. Singh and J. Fehrs, The work that goes into renewable energy, The Work That Goes into Renewable Energy (2001).

  81. G. Dan, Energy Convers. Manage., 38,Supplement(0), S279 (1997).

    Google Scholar 

  82. J. Koornneef, M. Spruijt, M. Molag, A. Ramírez, W. Turkenburg and A. Faaij, J. Hazard. Mater., 177(1–3), 12 (2010).

    Article  CAS  Google Scholar 

  83. J. Gale and J. Davison, Energy, 29(9–10), 1319 (2004).

    Article  CAS  Google Scholar 

  84. P. Burgherr and S. Hirschberg, Energy, 33(4), 538 (2008).

    Article  Google Scholar 

  85. E. Ranheim, The responsibilities of the ship owner and what he can do to improve safety, “sécurité Maritime et Protection de l’Environnement” Evolution et Perspectives Conference, 68 (2002).

  86. R. Skjong, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering — OMAE, 2, 319 (2005).

    Google Scholar 

  87. K. P. Saripalli, N. M. Mahasenan and E.M. Cook, Proceedings of the 6 th International Conference on Greenhouse Gas Control Technologies, 1, 511 (2003).

    Article  CAS  Google Scholar 

  88. M. Vendrig, The use of SWIFT and QRA in determining risk of leakage from CO 2 capture, transport and storage systems, Report Number PH4/31, 230 (2004).

  89. S. M. Benson, R. Hepple, J. Apps, C. F. Tsang and M. Lippmann, Lessons learned from natural and industrial analogues for storage of carbon dioxide in deep geological formations, Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations (2002).

  90. P. D. Jordan and S.M. Benson, Environmental Geology, 57(5), 1103 (2009).

    CAS  Google Scholar 

  91. P. Viebahn, A. Esken and M. Fischedick, Energy Procedia, 1(1), 4023 (2009).

    Article  CAS  Google Scholar 

  92. R. S. Middleton, M. J. Kuby and J. M. Bielicki, Generating candidate networks for optimization: The CO 2 capture and storage optimization problem, Computers, Environment and Urban Systems.

  93. M. Ha-Duong and R. Loisel, Int. J. Greenhouse Gas Control, 5(5), 1346 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Beum Lee.

Additional information

In Beum Lee is currently a Professor in the Chemical Engineering Department of Pohang University of Science and Technology (POSTECH), Korea. He obtained his B.S. and M.S. from Yonsei University and KAIST, and received Ph.D. in Chemical Engineering from Purdue University in 1987. His area of research interests includes Computer Aided Process Design, Process Synthesis and Control of Chemical Processes, Heat Integration in Chemical Process, Retrofitting Process Design, Batch Process Scheduling and Design. He has spent over 30 years researching these topics, and has published over 120 related papers in SCI journals. He has delivered numerous invited/keynote lectures in academia and professional societies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, JH., Ahn, YC., Lee, JU. et al. Optimal strategy for carbon capture and storage infrastructure: A review. Korean J. Chem. Eng. 29, 975–984 (2012). https://doi.org/10.1007/s11814-012-0083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0083-3

Key words

Navigation