Skip to main content

Advertisement

Log in

Preparation and characterizations of Ni-alumina, Ni-ceria and Ni-alumina/ceria catalysts and their performance in biomass pyrolysis

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The catalytic activity of Ni/Al2O3, Ni/CeO2, and Ni/Al2O3-CeO2 catalysts of different compositions were investigated over biomass pyrolysis process. Catalysts were prepared using co-precipitation method with various compositions of nickel and support materials. Surface characterizations of the materials were evaluated using XRD, SEM, and BET surface area analysis with N2 adsorption isotherm. XRD analysis reveals the presence of Al2O3, CeO2, NiO, and NiAl2O4 phases in the catalysts. Paper samples used for daily writing purposes were chosen as biomass source in pyrolysis. TGA experiment was performed on biomass with and without presence of catalysts, which resulted in the decrease of initial degradation temperature of paper biomass with the influence of catalysts. In a fixed-bed reactor, untreated and catalyst mixed biomasses were pyrolyzed up to 800 °C, with a residence time of 15 min. The non-condensable gases were collected through gas bags every after 100 °C and also at 5, 10, and 15 min residence time at 800 °C, which were analyzed using TCD-GC equipment. Comparative distributions of solid, liquid and gaseous components were made. Results indicated diminished amount of tar production in presence of catalysts. 30 wt% Ni/CeO2 catalyst yielded least amount of tar product. The least amount of CO was produced over the same catalyst. According to gas analysis result, 30 wt% Ni doped alumina sample produced maximum amount of H2 production with 43.5 vol% at 800 °C (15 min residence time).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Ilipoulou, E.V. Antonakou, S. A. Karakoulia, I. A. Vasalos, A. A. Lappas and K. S. Triantafyllidis, Chem. Eng. J., 134 (2007).

  2. M. F. Demirbas and M. Balat, Energy Convers. Manage., 47 (2006).

  3. P. McKendry, Bioresour. Technol., 83 (2002).

  4. S. Yaman, Energy Convers. Manage., 45 (2004).

  5. A. Demirbas, Energy Convers. Manage., 41 (2000).

  6. C. H. Wu, C. Y. Chang, C. H. Tseng and J. P. Lin, J. Anal. Appl. Pyrol., 67 (2003).

  7. A. Demirbas and G. Arin, Energy Sources, 24 (2002).

  8. K. Bru, J. Blin, A. Julbe and G. Volle, J. Anal. Appl. Pyrol., 78 (2007).

  9. L. Devi, K. J. Ptasinski and F. J. J.G. Janssen, Biomass Bioenergy, 24 (2003).

  10. L. Devi, M. Craje, P. Thüne, K. J. Ptasinski and F. J. J.G. Janssen, Appl. Catal. A: Gen., 294 (2005).

  11. P. T. Williams and P. A. Horne, J. Anal. Appl. Pyrol., 31 (1995).

  12. D. Sutton, B. Kelleher and J. R. H. Ross, Fuel Process. Technol., 73 (2001).

  13. K. Tomishige, M. Asadullah and K. Kunimori, Catal. Today, 89 (2004).

  14. S. Rapagna, N. Jand and P. U. Foscolo, Int. J. Hydrog. Energy, 23 (1998).

  15. A. Orio, J. Corella, I. Narvaez, in: A.V. Bridgwater, D.G. B. Boocock (Eds.), Developments in thermochemical biomass conversion, Blackie Academic & Professional, 1144 (1997).

  16. S. Rapagna, N. Jand, A. KInnemann and P. U. Foscolo, Biomass Bioenergy, 19 (2000).

  17. J. Corella, J. M. Toledo and R. Padilla, Energy Fuels, 18 (2004).

  18. A. Orio, J. Corella and I. Narvaez, Ind. Eng. Chem. Res., 36 (1997).

  19. P. A. Simell, J. K. Leppalahti and J. B.-s. Bredenberg, Fuel, 71 (1992).

  20. C. Courson, E. Makaga, C. Petit and A. Kinnemann, Catal. Today, 63 (2000).

  21. S. C. Tsang, J. B. Claridge and M. J. H. Green, Catal. Today, 23 (1995).

  22. J. Nishikawa, T. Miyazawa, K. Nakamura, M. Asadullah, K. Kunimori and K. Tomishige, Catal. Commun., 9 (2008).

  23. K. Nakamura, T. Miyazawa, T. Sakurai, T. Miyao, S. Naito, N. Begum, K. Kunimori and K. Tomishige, Appl. Catal. B: Environ., 86 (2009).

  24. N. M. Deraz, Colloids and Surfaces A: Physicochem. Eng. Aspects, 335 (2009).

  25. I. Atribak, A. B. López and A.G. García, J. Mol. Catal. A: Chem., 300 (2009).

  26. M. Thammachart, V. Meeyoo, T. Risksomboon and S. Osuwan, Catal. Today, 61 (2001).

  27. R. A. Mahesh, R. Jayaganthan, S. Prakash, V. Chawla and R. Chandra, Mater. Chem. Phys., 114 (2009).

  28. L. Zhang, W. Li, J. Liu, C. Guo, Y. Wang and J. Zhang, Fuel, 88 (2009).

  29. F. Mariño, G. Baronetti, M. Jobbagy and M. Laborde, Appl. Catal. A: Gen., 238 (2003).

  30. J. Chattopadhyay, C. H. Kim, R. H. Kim and D. Pak, J. Ind. Chem., DOI: 10.1016/j.jiec.2008.08.022.

  31. S. J. Gregg and K. S.W. Sing, Adsorption, Surface Area and Porosity, 2nd Ed., Academic Press, New York (1982).

    Google Scholar 

  32. T. Kashiwagi and H. Nambu, Combust. Flame, 88 (1992).

  33. F. Shafizadeh, Adv. Carbohydr. Chem., 23 (1968).

  34. D. Martin and D. Duprez, J. Phys. Chem., 100 (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daewon Pak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, J., Son, J.E. & Pak, D. Preparation and characterizations of Ni-alumina, Ni-ceria and Ni-alumina/ceria catalysts and their performance in biomass pyrolysis. Korean J. Chem. Eng. 28, 1677–1683 (2011). https://doi.org/10.1007/s11814-011-0027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0027-3

Key words

Navigation