Skip to main content

Advertisement

Log in

Naphthalene destruction performance from tar model compound using a gliding arc plasma reformer

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Recycling of various wastes such as sewage sludge requires an energy conversion process like thermal pyrolysis/gasification. During the process, tar and syngas are produced, but the tar brings trouble in pipelines and creates operating problems for the facility. In this study, to investigate naphthalene destruction in a gliding arc plasma reformer, parametric experiments were achieved in the variables that can affect the destruction efficiency. And through the parametric studies, the optimal operating conditions and the results were taken. For the parametric studies, steam input amount (steam/carbon ratio), input discharged power SEI (specific energy input), total feed gas amount, input naphthalene concentration, and electrode length were selected for experiments. Optimal conditions were 2.5 of S/C ratio, 1 kWh/m3 of SEI, 18.4 L/min of total gas amount, 1% of input naphthalene concentration, and 95 mm of electrode length. The corresponding maximum destruction efficiency of naphthalene was 79%, and energy efficiency showed 47 g/kWh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Devi, K. J. Ptasinski and F. J. J.G. Janssen, Fuel Processing Technol., 86, 707 (2005).

    Article  CAS  Google Scholar 

  2. H. Zhao, D. J. Draelants and G.V. Baron, Ind. Eng. Chem. Res., 39, 3195 (2000).

    Article  CAS  Google Scholar 

  3. L. Devi, K. L. Ptasinski and F. J. J.G. Janssen, Ind. Eng. Chem. Res., 44, 9096 (2005).

    Article  CAS  Google Scholar 

  4. Y. N. Chun and H. O. Song, Environ. Eng. Sci., 23, 1010 (2006).

    Article  Google Scholar 

  5. A. J. M. Pemen, S. A. Nair, K. Yan, E. J. M. van Heesch, K. J. Ptasinski and A. A. H. Drinkenburg, Plasmas and Polymers, 8, 209 (2003).

    Article  Google Scholar 

  6. Z. L. Wu, X. Gao, Z.Y. Luo, M. J. Ni and K. F. Cen, J. Environ. Sci., 16, 543 (2004).

    CAS  Google Scholar 

  7. Y. F. Guo, D. Q. Ye, D. F. Chen, J. C. He and W. L. Chen, J. Mol. Catal. A:Chem., 245, 93 (2006).

    Article  CAS  Google Scholar 

  8. C. M. Du, J. J. Yan and B. Cheron, Plasma Sources Sci. Technol., 16, 791 (2007).

    Article  CAS  Google Scholar 

  9. Y. N. Chun and H. O. Song, Energy Sources, 30, 1202 (2008).

    Article  CAS  Google Scholar 

  10. A. Indarto, J.W. Choi, H. Lee and H. K. Song, Energy, 31, 2986 (2006).

    Article  CAS  Google Scholar 

  11. R. Burlica, M. J. Kirkpatrick, W. C. Finney, R. J. Clark and B. R. Locke, J. Electrostatics, 62, 309 (2004).

    Article  CAS  Google Scholar 

  12. T. Sreethawong, P. Thankonpatthanakun and S. Chavadej, Int. J. Hydrogen Energy, 32, 1067 (2007).

    Article  CAS  Google Scholar 

  13. L. Yu, J. H. Yan, X. D. Li, X. Tu, S.Y. Lu, M. J. Ni, Y. Chi and K. F. Cen, International Symposium on Plasma Chemistry, 19th International symposium on plasma chemistry Bochum, July 26 to 31 (2009).

  14. Z. Bo, J. Yan, X. Li, Y. Chi and K. F. Cen, J. Hazard. Mater., 155, 494 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Nam Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y.C., Chun, Y.N. Naphthalene destruction performance from tar model compound using a gliding arc plasma reformer. Korean J. Chem. Eng. 28, 539–543 (2011). https://doi.org/10.1007/s11814-010-0393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0393-2

Key words

Navigation