Skip to main content
Log in

Effect of fluid velocity and temperature on the corrosion mechanism of low carbon steel in industrial water in the absence and presence of 2-hydrazino benzothiazole

  • Catalysis, Reaction Engineering, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This work was carried out to study the inhibition mechanism of volatile corrosion inhibitors (VCIs) such as 2-hydrazinobenzothiazole (2-HBTA) on the corrosion of low carbon steel in industrial water by using polarization and mass loss measurement. It was found that 2-HBTA revealed good performance as inhibitor for low carbon steel corrosion in industrial water. After some time, the performance decreased due to the volatility of these kinds of inhibitors away from the open system unlike the closed system. The experimental data indicated that the inhibitive performance of 2-HBTA for low carbon steel was improved with increasing of concentration up to the critical concentration (4.24×10−3M). The adsorption behavior of 2-HBTA was found to obey Langmuir’s adsorption isotherm. The thermodynamic parameters of adsorption process and activation energy were obtained from polarization technique. Scanning electron microscopy (SEM) was performed to characterize the film formed on the surface. Box-Wilson statistical method was employed to correlate the results obtained, and the optimization of fluid velocity, temperature and concentration of inhibitor by using Box-Wilson statistical method was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Cano, D. M. Bastidas, J. Simancas and J. M. Bastidas, Corrosion, 61, 5 (2005).

    Article  Google Scholar 

  2. J. M. Bastidas, J. De Damborenea and A. Vazquez, J. Appl. Electrochem, 27, 345 (1997).

    Article  CAS  Google Scholar 

  3. J. De Damborenea, J.M. Bastida and A. Vazquez, Electrochim. Acta, 42, 455 (1997).

    Article  Google Scholar 

  4. Horvath, Tibor, Eirka, Kutson, Gyogy and Adam, Magy. Kem. Foly, 98, 363 (1997).

    Google Scholar 

  5. N. Jallerat, F. L. Port, F. Bourelier and Vu. K. Qng, International Congress on Metallic Corrosion, Toronto, Canada, 4, 404 (1984).

    CAS  Google Scholar 

  6. W. Roberston and J. Electrochem., Soc., 98, 94 (1951).

    Google Scholar 

  7. M. Bouklah, N. Benchat, B. Hammouti, A. Aouniti and S. Kertit, Mater. Lett., 60, 1901 (2006).

    Article  CAS  Google Scholar 

  8. A. Leng and M. Stratmann, Corros. Sci., 34, 1657 (1993)

    Article  CAS  Google Scholar 

  9. L. R. M. Estevao and R. S. V. Nascimento, Corros. Sci., 43, 1133 (2001).

    Article  CAS  Google Scholar 

  10. V. S. Sastry, Corrosion inhibitors, principles and applications, John Wiley & Sons, New York (1998).

    Google Scholar 

  11. G. Baril, C. Blanc, M. Keddam and N. Pebere, J. Electrochem. Soc., 151, 488 (2003).

    Article  CAS  Google Scholar 

  12. O. Benali, L. Larabi, M. Traisnel, L. Gengembre and Y. Harek, Appl. Sur. Sci., 253, 6130 (2007).

    Article  CAS  Google Scholar 

  13. B.G. Ateya, B. M. Abo Elkhai and I.A. Abdel Hamid, Corros. Sci., 16, 163 (1976).

    Article  CAS  Google Scholar 

  14. W. L. McCabe, C. S. Julian and P. Hariott, Unit operations of chemical engineering, 4th ed, McGraw Hill, p. 217, 219 and 690 (1985).

  15. R.K. Sinnott, Chemical engineering, Vol. 1, 1st ed., Pergamon Press, Oxford (1983).

    Google Scholar 

  16. S. Bilgic and N. Caliskan, Appl. Sur. Sci., 152, (1999).

  17. F.M. Donahue and K. Nobe, J. Electrochem. Soc., 112, 886 (1965).

    Article  CAS  Google Scholar 

  18. E. Kamis, F. Bellucci, R. M. Latanision and E. S.H. El-Ashry, Corrosion, 47, 677 (1991).

    Google Scholar 

  19. F.M. Bayoumi and W.A. Ghanem, Mater. Lett., 59, 3806 (2005).

    Article  CAS  Google Scholar 

  20. M. J.M. Campbell, R. Grazeskawiak and S.G. Juneja, J. Inorg. Nucl. Chem., 36, 2485 (1974)

    Article  CAS  Google Scholar 

  21. D.G. Montgomery, Design and analysis of industrial experiments, 3rd ed., New Delhi (1976).

  22. G. E. P. Box and K. B. Wilson, J. Royal Statis. Soc., 1, 13 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badiea, A.M., Mohana, K.N. Effect of fluid velocity and temperature on the corrosion mechanism of low carbon steel in industrial water in the absence and presence of 2-hydrazino benzothiazole. Korean J. Chem. Eng. 25, 1292–1299 (2008). https://doi.org/10.1007/s11814-008-0212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0212-1

Key words

Navigation