Skip to main content
Log in

Gasification of municipal solid waste in a pilot plant and its impact on environment

  • Energy and Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Municipal solid waste from three cities was gasified in a 3 ton/day capacity gasification/melting pilot plant based on Thermoselect at a temperature of around 1,200 °C using double inverse diffusion flame burner. The synthesis gas (syngas) obtained from gasification contains 25–34% CO and 28–38% of H2. The high heating value of syngas was in the range of 10.88–14.65MJ/Nm3. Volatile organic compounds like furan, dioxin, and other organics in gaseous and liquid phase were effectively destroyed because of the high temperature of the high temperature reactor and shock cooling of syngas. Pollutants in exhaust gases were also found to be satisfying the Korean emission standard. Leaching concentration of heavy metals in the melted slag (vitrified mineral aggregate), fly ash, and treated water was much less than the Korean regulatory limit values due to high melting temperature (1,600 °C). The vitrified slag was of dark brown color. The glassy and amorphous nature of the vitrified mineral aggregate was further confirmed from SEM micrograph and XRD spectra of slag. The vitrified mineral aggregate could be used as natural raw material in cement and construction industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barbieri, L., Bonamartini, A. C. and Lancellotti, I., “Alkaline and alkaline-earth silicate glasses and glass-ceramics from municipal and industrial wastes,” J. Eur. Ceramic Soc., 20, 2477 (2000).

    Article  CAS  Google Scholar 

  • Björklund, A., Melaina, M. and Keoleian, G., “Hydrogen as a transportation fuel produced from thermal gasification of municipal solid waste: An examination of two integrated technologies,” Int. J. Hydrogen Energy, 26, 1209 (2001).

    Article  Google Scholar 

  • Calaminus, B. and Stahlberg, R., “Continuous in-line gasification/vitrification process for thermal waste treatment: Process technology and current status of projects,” Waste Manage., 18, 547 (1998).

    Article  CAS  Google Scholar 

  • Chandler, A. J., Eighmy, T. T., Hartlein, J., Hjelmar, O., Kosson, D. S., Sawell, S. E., Van der Sloot, H. A. and Vehlow, J., Municipal solid waste incinerator residues, Elsevier Science, Amsterdam (1997).

    Google Scholar 

  • Climate Change 2001: The Scientific Basis, Intergovernmental Penal on Climate Change (IPCC), Cambridge Press, Cambridge (2001).

    Google Scholar 

  • Choi, Y.C., Lee, J.G., Kim, J. H., Hong, J. C., Kim, Y. K., Yoon, S. J. and Park, M. H., “Characteristics of air-blown gasification in a pebble bed gasifier,” Korean J. Chem. Eng., 23, 380 (2006).

    Article  CAS  Google Scholar 

  • Christensen, J. B. and Christensen, T. H., “The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate-polluted groundwater,” Water Res., 34, 3743 (2000).

    Article  CAS  Google Scholar 

  • Ecke, H., Sakanakura, H., Matsuto, T., Tanaka, N. and Lagerkvist, A., “Effect of electric arc vitrification of bottom ash on the mobility and fate of metals,” Environ. Sci. Technol., 35, 1531 (2001).

    Article  CAS  Google Scholar 

  • Feuerriegel, U., Künsch, M., Stahlberg, R. and Steiger, F., The material and energy balance of the thermoselect process. In The thermoselect process for the degasification and gasification of wastes, F. J. Schweitzer (ed.), EF-Verlag, Berlin (1994).

    Google Scholar 

  • Fung, D. P.C. and Kim, S. D., “Gasification kinetics of coals and wood,” Korean J. Chem. Eng., 7, 109 (1990).

    Article  CAS  Google Scholar 

  • Goldstein, N., Steuteville, R. and Farrell, M., “MSW composting in the united states,” Biocycle, 37, 46 (1996).

    Google Scholar 

  • Huang, H. and Buekens, A., “Chemical kinetic modeling of de novo synthesis of PCDD/F in municipal waste incinerators,” Chemosphere, 44, 1505 (2001).

    Article  CAS  Google Scholar 

  • Hur, J.M. and Kim, S. H., “Combined adsorption and chemcial precipitation process for pretreactment or post-tretment of landfill leachate,” Korean J. Chem. Eng., 17, 433 (2000).

    Article  CAS  Google Scholar 

  • Hur, J.M., Park, J. A., Son, B. S., Jang, B.G. and Kim, S. H., “Mature landfill leachate treatment from an abandoned municipal solid waste site,” Korean J. Chem. Eng., 18, 233 (2001).

    Article  CAS  Google Scholar 

  • Hyun, J. S., Park, J.W., Maken, S. and Park, J. J., “Vitrification of fly and bottom ashes from municipal solid waste incinerator using Brown’s gas,” J. Ind. Eng. Chem., 10, 361 (2004).

    CAS  Google Scholar 

  • Jung, C. H., Matsuto, T. and Tanaka, N., “Behavior of metals in ash melting and gasification-melting of municipal solid waste (MSW),” Waste Manage., 25, 301 (2005).

    Article  CAS  Google Scholar 

  • Jun, J. H., Lee, T. J., Lim, T. H., Nam, S.W., Hong, S.A. and Yoon, K. J., “Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: Characterization and activation,” J. Catalysis, 221, 178 (2004).

    Article  CAS  Google Scholar 

  • Kaminsky, W., Pyrolysis of Polymers. In Emerging technologies in plastic recycling, G.D. Andrews, P. M. Subramanian (Eds.) American Chemical Society, Philadelphia (1992).

    Google Scholar 

  • Kim, K. H. and Kim, M.Y., “Mercury emissions as landfill gas from a large-scale abandoned landfill site in Seoul,” Atmospheric Environment, 36, 4919 (2002).

    Article  CAS  Google Scholar 

  • Kim, M. H., Park, H. K., Chung, G.Y., Lim, H.C., Nam, S.W., Lim, T. H. and Hong, S. A., “Effects of water-gas shift reaction on simulated performance of a molten carbonate fuel cell,” J. Power Sources, 103, 245 (2002).

    Article  CAS  Google Scholar 

  • Kim, K.Y., Korea environmental policy bulletin, Ministry of Environment Institute, Republic of Korea, Vol. 1, Issue 1 (2003).

    Google Scholar 

  • Kiss, G., Marfiewicz, W., Riegel, J. and Stahlberg, R., Thermoselectrecovery of energy and raw materials from waste, in the thermoselect process for the degasification and gasification of wastes, F. J. Schweitzer, (ed.), EF-Verlag, Berlin (1994).

    Google Scholar 

  • Kjeldsen, P., Barlaz, M.A., Rooker, A. P., Baun, A., Ledin, A. and Christensen, T. H., “Present and long-term composition of MSW landfill leachate: A review,” Critical Reviews in Environ. Sci. Technol., 22, 297 (2002).

    Article  Google Scholar 

  • Ko, M. K., Lee, W.Y., Kim, S. B., Lee, K.W. and Chun, H. S., “Gasification of food waste with steam in fluidized bed,” Korean J. Chem. Eng., 18, 961 (2001).

    Article  CAS  Google Scholar 

  • Kwak, T.H., Lee, S., Maken, S., Shin, H.C., Park, J.W. and Yoo, Y. D., “A study of gasification of municipal solid waste using double inverse diffusion flame burner,” Energy & Fuels, 19, 2268 (2005).

    Article  CAS  Google Scholar 

  • Lee, S. H., Choi, K. B., Lee, J.G. and Kim, J. H., “Gasification characteristics of combustible wastes in a 5 ton/day fixed bed gasifier,” Korean J. Chem. Eng., 23, 576 (2006).

    Article  CAS  Google Scholar 

  • Lee, S.W., Nam, S. S., Kim, S. B., Lee, K.W. and Choi, C. S., “The effect of Na2CO3 on the catalytic gasification of rice straw over nickel catalysts supported on kieselguhr,” Korean J. Chem. Eng., 17, 174 (2000).

    Article  CAS  Google Scholar 

  • Li, C. T., Huang, Y. J., Huang, K. L. and Lee, W. J., “Characterization of slags and ingots from the vitrification of municipal solid waste incineration ashes,” Ind. Eng. Chem. Res., 42, 2306 (2003).

    Article  Google Scholar 

  • Li, M., Hu, S., Xiang, J., Sun, L. S., Li, P. S., Su, S. and Sun, X.X., “Characterization of fly ashes from two chinese municipal solid waste incinerators,” Energy & Fuels, 17, 1487 (2003).

    Article  CAS  Google Scholar 

  • Lin, K. L., Wang, K. S., Tzeng, B.Y. and Lin, C.Y., “The hydration characteristics and utilization of slag obtained by the vitrification of MSWI fly ash,” Waste Manage., 24, 199 (2004).

    Article  CAS  Google Scholar 

  • Maken, S., Hyun, J., Park, J.W., Song, H.C., Lee, S. and Chang, E.H., “Vitrification of MSWI fly ash using Brown’s gas and fate of heavy metals,” J Sci. Ind. Res. (India), 64, 198 (2005).

    CAS  Google Scholar 

  • Malkow, T., “Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal,” Waste Manage., 24, 53 (2004).

    Article  CAS  Google Scholar 

  • Ministry of Environment Report, Regulatory of Waste Management, Seoul, Republic of Korea (2000).

  • Ministry of Environment Report, State of MSW Generation in Korea, Seoul, Republic of Korea (2005).

  • Park, J. J., Park, K., Kim, J. S., Maken, S., Song, H., Shin, H., Park, J.W. and Choi, M. J., “Characterization of styrene recovery from the pyrolysis of waste expandable polystyrene,” Energy & Fuels, 17, 1576 (2003).

    Article  CAS  Google Scholar 

  • Park, J. J., Park, K., Park, J.W. and Kim, D. C., “Characteristics of LDPE pyrolysis,” Korean J. Chem. Eng., 19, 658 (2002).

    Article  CAS  Google Scholar 

  • Park, J.W. and Shin, H. C., “Surface emission of landfill gas from solid waste landfill,” Atmospheric Environment, 35, 3445 (2001).

    Article  CAS  Google Scholar 

  • Park, K., Hyun, J., Maken, S. and Park, J.W., “Vitrification of municipal solid waste incinerator ashes using Brown’s gas,” Energy & Fuels, 19, 258 (2005).

    Article  CAS  Google Scholar 

  • Park, Y. J. and Heo, J., “Vitrification of fly ash from municipal solid waste incinerator,” J. Hazard. Mater., 91, 83 (2002).

    Article  CAS  Google Scholar 

  • Sakai, S., Sawell, S. E., Chandler, A. J., Eighmy, T. T., Kosson, D. S., Vehlow, J., Van der Sloot, H. A., Hartlen, J. and Hjelmar, O., “World trends in municipal solid waste management,” Waste Manage., 16, 341 (1996).

    Article  CAS  Google Scholar 

  • Sanin, F. D., Knappe, D. R. U. and Barlaz, M. A., “The fate of toluene, acetone and 1,2-dichloroethane in a laboratory-scale simulated landfill,” Water Res., 34, 3063 (2000).

    Article  CAS  Google Scholar 

  • Stahlberg, R., High-temperature recycling and minimization of environmental pollution through complete thermal-chemical material conversion, MUT International Congress for Environmental Engineering and Research, Basel, October (1992).

    Google Scholar 

  • Takaoka, M., Takeda, N. and Miura, S., “The behavior of heavy metals and phosphorus in an ash melting process,” Water Sci. Technol., 36, 275 (1997).

    Article  CAS  Google Scholar 

  • Tchobanoglous, G., Theisen, H. and Vigil, S., Integrated solid waste management, McGraw-Hill, New York (1993).

    Google Scholar 

  • Werther, J. and Ogada, T., “Sewage sludge combustion,” Prog. Energy & Combustion Sci., 25, 55 (1999).

    Article  CAS  Google Scholar 

  • Yoshiie, R., Kawaguchi, M., Nishimura, M. and Moritomi, H., “Experimental analysis of heavy metal emission in melting treatment of incineration ash,” J. Chem. Eng., Japan, 33, 551 (2000).

    Article  CAS  Google Scholar 

  • Yoshiie, R., Nishimura, M. and Moritomi, H., “Influence of ash composition on heavy metal emission in ash melting process,” Fuel, 81, 1335 (2002).

    Article  CAS  Google Scholar 

  • Yun, Y. and Ju, J. S., “Operation performance of a pilot-scale gasification/ melting process for liquid and slurry-type wastes,” Korean J. Chem. Eng., 20, 1037 (2003).

    Article  CAS  Google Scholar 

  • Yun, Y. and Yoo, Y. D., “Performance of a pilot-scale gasifier for Indonesian Baiduri coal,” Korean J. Chem. Eng., 18, 679 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Won Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwak, TH., Lee, S., Park, JW. et al. Gasification of municipal solid waste in a pilot plant and its impact on environment. Korean J. Chem. Eng. 23, 954–960 (2006). https://doi.org/10.1007/s11814-006-0014-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-006-0014-2

Key words

Navigation