Skip to main content
Log in

Microbial Community Composition and Function in Sediments from the Pearl River Mouth Basin

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

This study was conducted to characterize the diversity and function of microbial communities in marine sediments of the Pearl River Mouth Basin (PRMB) in the South China Sea. The results showed that the bacterial and archaeal communities varied greatly with depth. Proteobacteria in bacterial communities and Nitrososphaeria and Woesearchaeota in archaeal communities were dominant in the shallow sediments (1–40 cm), while Chloroflexi in bacterial communities and Bathyarchaeia in archaeal communities were dominant in the deep sediments (50–200 cm). Regarding ecological functions based on the metatranscriptomic data, genes involved in various pathways of nitrogen metabolism and sulfur metabolism were observed in the tested sediment samples. Metagenomic analysis revealed that Proteobacteria contribute the most to nearly all genes involved in nitrogen and sulfur metabolism. Moreover, Thaumarchaeota contribute the most to certain genes involved in nitrification, denitrification and assimilatory sulfate reduction pathways. The most abundant bacterial genus, Candidatus Scalindua, is crucial for nitrification, dissimilatory nitrate reduction, denitrification and assimilatory sulfate reduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R., Mills, D. A., and Caporaso, J. G., 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10(1): 57–59.

    Google Scholar 

  • Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P., 2008. Mesophilic Crenarchaeota: Proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology, 6(3): 245–252.

    Google Scholar 

  • Brunold, C., 1993. Regulatory interactions between sulfate and nitrate assimilation. In: Sulfur Nutrition and Sulfur Assimilation in Higher Plants. De Kok, L. J., et al., eds., SPB Academic Publishing, the Hague, the Netherlands, 61–75.

    Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., and Costello, E. K., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336.

    Google Scholar 

  • Caranto, J. D., and Lancaster, K. M., 2017. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 114(31): 8217–8222.

    Google Scholar 

  • Coolen, M. J. L., Cypionka, H., Sass, A. M., Sass, H., and Overmann, J., 2002. Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science, 296(5577): 2407–2410.

    Google Scholar 

  • Coolen, M. J., Hopmans, E. C., Rijpstra, W. I., Muyzer, G., Schouten, S., Volkman, J. K., and Damsté, J. S., 2004. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: Response of methanogens and methanotrophs to environmental change. Organic Geochemistry, 35(10): 1151–1167.

    Google Scholar 

  • Dang, H., Zhou, H., Zhang, Z., Yu, Z., Hua, E., Liu, X., and Jiao, N., 2013. Molecular detection of Candidatus Scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China. PLoS One, 8(4): e61330.

    Google Scholar 

  • Drenovsky, R. E., Vo, D., Graham, K. J., and Scow, K. M., 2004. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microbial Ecology, 48(3): 424.

    Google Scholar 

  • Gold, T., 1992. The deep, hot biosphere. Proceedings of the National Academy of Sciences of the United States of America, 89(13): 6045–6049.

    Google Scholar 

  • Gong, J., Sun, X., Lin, Z., Lu, H., and Lu, Y., 2017. Geochemical and microbial characters of sediment from the gas hydrate area in the Taixinan Basin, South China Sea. Acta Oceanologica Sinica, 36(9): 52–64.

    Google Scholar 

  • He, H., Zhen, Y., Mi, T., Xu, B., Wang, G., Zhang, Y., and Yu, Z., 2015. Community composition and distribution of sulfate- and sulfite-reducing prokaryotes in sediments from the Changjiang Estuary and adjacent East China Sea. Estuarine, Coastal and Shelf Science, 165: 75–85.

    Google Scholar 

  • Hori, T., Kimura, M., Aoyagi, T., Navarro, R. R., Ogata, A., Sakoda, A., Katayama, Y., and Takasaki, M., 2014. Biodegradation potential of organically enriched sediments under sulfate- and iron-reducing conditions as revealed by the 16S rRNA deep sequencing. Journal of Water and Environment Technology, 12(4): 357–366.

    Google Scholar 

  • Hou, L., Zheng, Y., Liu, M., Gong, J., Zhang, X., Yin, G., and You, L., 2013. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. Journal of Geophysical Research: Biogeosciences, 118(3): 1237–1246.

    Google Scholar 

  • Hug, L., Castelle, C., Wrighton, K., Thomas, B., Sharon, I., Frischkorn, K., 2013. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome, 1(1): 22.

    Google Scholar 

  • Iino, T., Tamaki, H., Tamazawa, S., Ueno, Y., Ohkuma, M., Suzuki, K., Igarashi, Y., and Haruta, S., 2013. Candidatus Methanogranum caenicola: A novel methanogen from the anaerobic digested sludge and proposal of Methanomassiliicoccaceae fam. nov and Methanomassiliicoccales ord. nov. for a methanogenic lineage of the class Thermoplasmata. Microbes and Environments, 28: 244–250.

    Google Scholar 

  • Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M., Lauer, A., Suzuki, M., Takai, K., Delwiche, M., Colwell, F. S., Nealson, K. H., Horikoshi, K., D’Hondt, S., and Jergensen, B. B., 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proceedings of the National Academy of Sciences of the United States of America, 103(8): 2815–2820.

    Google Scholar 

  • Inagaki, F., Suzuki, M., Takai, K., Oida, H., Sakamoto, T., Aoki, K., Nealson, K. H., and Horikoshi, K., 2003. Microbial communities associated with geological horizons in coastal sub-seaflor sediments from the Sea of Okhotsk. Applied Environmental Microbiology, 69(12): 7224–7235.

    Google Scholar 

  • Jiang, L., Zheng, Y., Peng, X., Zhou, H., Zhang, C., Xiao, X., and Wang, F., 2009. Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China. FEMS Microbiology Ecology, 70(2): 249–262.

    Google Scholar 

  • Jiao, L., Su, X., Wang, Y., Jiang, H., Zhang, Y., and Chen, F., 2015. Microbial diversity in the hydrate-containing and-free surface sediments in the Shenhu area, South China Sea. Geoscience Frontiers, 6(4): 627–633.

    Google Scholar 

  • Jochum, L. M., Chen, X., Lever, M. A., Loy, A., Jergensen, B. B., Schramm, A., and Kjeldsen, K. U., 2017. Depth distribution and assembly of sulfate-reducing microbial communities in marine sediments of Aarhus Bay. Applied and Environmental Microbiology, 83(23): e01547–17.

    Google Scholar 

  • Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C., and D’Hondt, S., 2012. Global distribution of microbial abundance and biomass in subseafloor sediment. Proceedings of the National Academy of Sciences of the United States of America, 109(40): 16213–16216.

    Google Scholar 

  • Keshtacher-Liebso, E., Hadar, Y., and Chen, Y., 1995. Oligotrophic bacteria enhance algal growth under iron-deficient conditions. Applied and Environmental Microbiolology, 61(6): 2439–2441.

    Google Scholar 

  • Könneke, M., Bernhard, A. E., de la Torre, J. R., Walker, C. B., Waterbury, J. B., and Stahl, D. A., 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437: 543–546.

    Google Scholar 

  • Krause, E., Wichels, A., Giménez, L., Lunau, M., Schilhabel, M. B., and Gerdts, G., 2012. Small changes in pH have direct effects on marine bacterial community composition: A microcosm approach. PLoS One, 7(10): e47035.

    Google Scholar 

  • Kubo, K., Lloyd, K. G., Biddle, J. F., and Amann, R., 2012. Archaea of the miscellaneous crenarchaeotal group are abundant, diverse and widespread in marine sediments. The ISME Journal, 6(10): 1949–1965.

    Google Scholar 

  • Lenk, S., Arnds, J., Zerjatke, K., Musat, N., Amann, R., and Muβmann, M., 2011. Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environmental Microbiology, 13(3): 758–774.

    Google Scholar 

  • Lin, L. H., Wu, L. W., Cheng, T. W., Tu, W. X., Lin, J. R., Yang, T. F., Chen, P. C., Wang, Y., and Wang, P. L., 2014. Distributions and assemblages of microbial communities along a sediment core retrieved from a potential hydrate-bearing region offshore southwestern Taiwan. Journal of Asian Earth Sciences, 92: 276–292.

    Google Scholar 

  • Liu, J., Liu, X., Wang, M., Qiao, Y., Zheng, Y., and Zhang, X., 2015. Bacterial and archaeal communities in sediments of the north Chinese marginal seas. Microbial Ecology, 70(1): 105–117.

    Google Scholar 

  • Lloyd, K. G., Schreiber, L., Petersen, D. G., Kjeldsen, K. U., Lever, M. A., Steen, A. D., Stepanauskas, R., Richter, M., Kleindienst, S., Lenk, S., Schramm, A., and Jergensen, B. B., 2013. Predominant archaea in marine sediments degrade detrital proteins. Nature, 496(7444): 215.

    Google Scholar 

  • Magoc, T., and Salzberg, S. L., 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21): 2957–2963.

    Google Scholar 

  • Mahmoudi, N., Robeson, M. S., Castro, H. F. C., Fortney, J. L., Techtmann, S. M., Joyner, D. C., Paradis, C. J., Pfiffner, S. M., and Hazen, T. C., 2015. Microbial community composition and diversity in Caspian Sea sediments. FEMS Microbiology Ecology, 91(1): 1–11.

    Google Scholar 

  • McCaig, A. E., Phillips, C. J., Stephen, J. R., Kowalchuk, G. A., Harvey, S. M., Herbert, R. A., Embley, T. M., and Prosser, J. I., 1999. Nitrogen cycling and community structure of proteobacterial β-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Applied and Environmental Microbiolology, 65(1): 213–220.

    Google Scholar 

  • Meng, J., Xu, J., Qin, D., He, Y., Xiao, X., and Wang, F., 2014. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. The ISME Journal, 8(3): 650–659.

    Google Scholar 

  • Meyer, B., and Kuever, J., 2007. Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Applied Environmental Microbiology, 73(23): 7664–7679.

    Google Scholar 

  • Meyer, B., Johannes, F., and Kuever, J., 2007. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria — Evolution of the Sox sulfur oxidation enzyme system. Environmental Microbiology, 9(12): 2957–2977.

    Google Scholar 

  • Mußmann, M., Pjevac, P., Krüger, K., and Dyksma, S., 2017. Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments. The ISME Journal, 11(5): 1276–1281.

    Google Scholar 

  • Nunoura, T., Takaki, Y., Kazama, H., Hirai, M., Ashi, J., Imachi, H., and Takai, K., 2012. Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes and Environments, 27(4): 382–390.

    Google Scholar 

  • Oni, O. E., Schmidt, F., Miyatake, T., Kasten, S., Witt, M., Hinrichs, K. U., and Friedrich, M. W., 2015. Microbial communities and organic matter composition in surface and subsurface sediments of the Helgoland mud area, North Sea. Frontiers in Microbiology, 6: 1290.

    Google Scholar 

  • Oshiki, M., Mizuto, K., Kimura, Z. I., Kindaichi, T., Satoh, H., and Okabe, S., 2017. Genetic diversity of marine anaerobic ammonium-oxidizing bacteria as revealed by genomic and proteomic analyses of ‘Candidatus Scalindua japonica’. Environmental Microbiology Reports, 9(5): 550–561.

    Google Scholar 

  • Oshiki, M., Satoh, H., and Okabe, S., 2016. Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environmental Microbiology, 18(9): 2784–2796.

    Google Scholar 

  • Peiffer, J. A., Spor, A., Koren, O., and Jin, Z., 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences, 110(16): 6548–6553.

    Google Scholar 

  • Peng, Y., Leung, H. C., Yiu, S. M., and Chin, F. Y., 2010. IDBA-A practical iterative de Bruijn graph de novo assembler. In: Annual International Conference on Research in Computational Molecular Biology. Springer, Berlin, Heidelberg, 426–440.

    Google Scholar 

  • Pinto, O. H., Silva, T. F., Vizzotto, C. S., Santana, R. H., Lopes, F. A., Silva, B. S., Thompson, F. L., and Kruger, R. H., 2020. Genome-resolved metagenomics analysis provides insights into the ecological role of Thaumarchaeota in the Amazon River and its plume. BMC Microbiology, 20(1): 13.

    Google Scholar 

  • Porat, I., Vishnivetskaya, T. A., Mosher, J. J., Brandt, C. C., Yang, Z. K., Brooks, S. C., Liang, L. Y., Drake, M. M., Podar, M., Brown, S. D., and Palumbo, A. V., 2010. Characterization of archaeal community in contaminated and uncontaminated surface stream sediments. Microbial Ecology, 60(4): 784–795.

    Google Scholar 

  • Poulsen, M., Schwab, C., Jensen, B. B., Engberg, R. M., Spang, A., Canibe, N., Hojberg, O., Milinovich, G., Fragner, L., Schleper, C., Weckwerth, W., Lund, P., Schramm, A., and Urich, T., 2013. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nature Communication, 4: 1428.

    Google Scholar 

  • Rambo, I. M., Dombrowski, N., Constant, L., Erdner, D., and Baker, B. J., 2019. Metabolic relationships of uncultured bacteria associated with the microalgae Gambierdiscus. Environmental Microbiology, 11: 1pp.

  • Schippers, A., and Neretin, L. N., 2006. Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environmental Microbiology, 8(7): 1251–1260.

    Google Scholar 

  • Schippers, A., Kock, D., Höft, C., Köweker, G., and Michael, S., 2012. Quantification of microbial communities in subsurface marine sediments of the Black Sea and off Namibia. Frontiers in Microbiology, 3: 16.

    Google Scholar 

  • Schmid, M. C., Risgaard-Petersen, N., van de Vossenberg, J., Kuypers, M. M. M., Lavik, G., Petersen, J., Hulth, S., Thamdrup, B., Canfield, D., Dalsgaard, T., Rysgaard, S., Sejr, M. K., Strous, M., Op den Camp, H. J. M., and Jetten, M. S. M., 2007. Anaerobic ammonium-oxidizing bacteria in marine environments: Widespread occurrence but low diversity. Environmental Microbiology, 9(6): 1476–1484.

    Google Scholar 

  • Starke, R., Müller, M., Gaspar M., Marz, M., Kusel, K., Totsche, K. U., von Bergen, M., and Jehmlich, N., 2017. Candidate Brocadiales dominates C, N and S cycling in anoxic ground-water of a pristine limestone-fracture aquifer. Journal of Proteomics, 152: 153–160.

    Google Scholar 

  • van de Vossenberg, J., Woebken, D., Maalcke, W. J., Wessels, H. J., Dutilh, B. E., and Kartal, B., 2013. The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environmental Microbiology, 15(5): 1275–1289.

    Google Scholar 

  • Varon-Lopez, M., Dias, A. C. F., Fasanella, C. C., and Durrer, A., 2014. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments. Environmental Microbiology, 16(3): 845–855.

    Google Scholar 

  • Wasmund, K., Schreiber, L., Lloyd, K. G., Petersen, D. G., Schramm, A., Stepanauskas, R., Jergensen, B. B., and Adrian, L., 2014. Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. The ISME Journal, 8(2): 383–397.

    Google Scholar 

  • Woebken, D., Lam, P., Kuypers, M. M. M., Naqvi, S. W. A., Kartal, B., Strous, M., Jetten, M. S. M., Fuchs, B. M., and Amann, R., 2008. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environmental Microbiology, 10(11): 3106–3119.

    Google Scholar 

  • Xie, S. P., Xie, Q., Wang, D., and Liu, W. T., 2003. Summer upwelling in the South China Sea and its role in regional climate variations. Journal of Geophysical Research: Oceans, 108(C8): 3261.

    Google Scholar 

  • Yannarell, A. C., and Triplett, E. W., 2005. Geographic and environmental sources of variation in lake bacterial community composition. Applied Environmental Microbiology, 71(1): 227–239.

    Google Scholar 

  • Yu, T., Liang, Q., Niu, M., and Wang, F., 2017. High occurrence of Bathyarchaeota (MCG) in the deep-sea sediments of South China Sea quantified using newly designed PCR primers. Environmental Microbiology Reports, 9(4): 374–382.

    Google Scholar 

  • Zhang, Y., Su, X., Chen, F., Wang, Y., Jiao, L., Dong, H., Huang, Y., and Jiang, H., 2012. Microbial diversity in cold seep sediments from the northern South China Sea. Geoscience Frontiers, 3(3): 301–316.

    Google Scholar 

  • Zhang, Y., Wang, X., Zhen, Y., Mi, T., He, H., and Yu, Z., 2017. Microbial diversity and community structure of sulfate-reducing and sulfur-oxidizing bacteria in sediment cores from the East China Sea. Frontiers in Microbiology, 8: 2133.

    Google Scholar 

  • Zhang, Y., Zhao, Z., Dai, M., Jiao, N., and Herndl, G. J., 2014. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Molecular Ecology, 23(9): 2260–2274.

    Google Scholar 

  • Zhou, J., Xia, B., Treves, D. S., Wu, L. Y., Marsh, T. L., O’Neill, R. V., Palumbo, A. V., and Tiedje, J. M., 2002. Spatial and resource factors influencing high microbial diversity in soil. Applied Microbiology and Biotechnology, 68(1): 326–334.

    Google Scholar 

Download references

Acknowledgements

We thank Mr. Hong Qiu for analyzing the TOC content. We are also grateful to all staff on the Dongfanghong 2 for assistance with the collection of samples and geochemical data during the cruise. This work was supported by the National Natural Science Foundation of China (Nos. 41620104001 and 41806131) and the Scientific and Technological Innovation Project of the Qingdao National Laboratory for Marine Science and Technology (No. 2016 ASKJ02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Mi, T., Liu, Y. et al. Microbial Community Composition and Function in Sediments from the Pearl River Mouth Basin. J. Ocean Univ. China 19, 941–953 (2020). https://doi.org/10.1007/s11802-020-4225-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-020-4225-7

Key words

Navigation