Skip to main content
Log in

Analysis of DNA methylation level by methylation-sensitive amplification polymorphism in half smooth tongue sole (Cynoglossus semilaevis) subjected to salinity stress

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Increasingly arisen environmental constraints may contribute to heritable phenotypic variation including methylation changes, which can help the animals with development, growth and survival. In this study, we assessed the DNA methylation levels in three tissues (gonad, kidney and gill) of half smooth tongue sole under the salinity stress. The methylation-sensitive amplification polymorphism (MSAP) technique was applied to illustrate the regulation of epigenetic mechanism in environmental stimuli. Fish were subjected to 15 salinity treatment for 7 and 60 days, respectively. A total of 11259 fragments were amplified with 8 pairs of selective primers. The levels of methylated DNA in different tissues of females and males without salinity stress were analyzed, which were 32.76% and 47.32% in gonad; 38.13% and 37.69% in kidney; 37.58% and 34.96% in gill, respectively. In addition, the significant difference was observed in gonad between females and males, indicating that discrepant regulation in gonadal development and differentiation may involve sex-related genes. Further analysis showed that total and hemi-methylation were significantly decreased under 15 salinity for 7 days, probably resulting in up-regulating salt-tolerance genes expression to adjust salt changing. With the adjustment for 60 days, total and hemi-methylation prominently went back to its normal levels to obtain equilibrium. Particularly, full methylation levels were steady along with salinity stress to maintain the stability of gene expression. Additionally, the data showed that gonads in females and gills in males were superior in adaptability. As a result, DNA methylation regulates tissue- specific epiloci, and may respond to salinity stress by regulating gene expression to maintain animal survival and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, R. C., Zoghbi, H., Moseley, A., Rosenblatt, H., and Belmont, J., 1992. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. American Journal of Human Genetics, 51: 1229.

    Google Scholar 

  • Alliot, E., Pastoureaud, A., and Thebault, H., 1983. Influence oftemperature and salinity on growth and body composition of sea bass fingerlings, Dicentrarchus labrax. Aquaculture, 31 (2-4): 181–194.

    Article  Google Scholar 

  • Angers, B., Castonguay, E., and Massicotte, R., 2010. Environmentally induced phenotypes and DNA methylation: How to deal with unpredictable conditions until the next generation and after. Molecular Ecology, 19: 1283–1295.

    Article  Google Scholar 

  • Bird, A. P., 1986. CpG-rich island and the function of DNA methylation. Nature, 321 (2): 209.

    Article  Google Scholar 

  • Bird, A., 2002. DNA methylation patterns and epigenetic memory. Genes & Development, 16: 6–21.

    Article  Google Scholar 

  • Boerboom, D., Kerban, A., and Sirois, J., 1999. Dual regulation of promoter II-and promoter1f-derived cytochrome P450 aromatase transcripts in equine granulosa cells during human chorionic gonadotropin-induced ovulation: A novel model for the study of aromatase promoter switching. Endocrinology, 140: 4133–4141.

    Google Scholar 

  • Boeuf, G., and Payan, P., 2001. How should salinity influence fish growth? Comparative Biochemistry and Physiology, 130: 411–423.

    Google Scholar 

  • Cao, Z. M., and Yang, J., 2009. Analysis of the methylation in genome DNA from different tissues of Anodonta woodiana. Ecology and Environmental Sciences, 18 (6): 2011–2016.

    Google Scholar 

  • Chanda, S., Dasgupta, U. B., GuhaMazumder, D., Gupta, M., Chaudhuri, U., Lahiri, S., Das, S., Ghosh, N., and Chatterjee, D., 2006. DNA hypermethylation of promoter of gene p53 and p16in arsenic-exposed people with and without malignancy. Toxicological Sciences, 89 (2): 431–437.

    Article  Google Scholar 

  • Chen, P. J., Wang, C. G., and Zheng, S. L., 1998. Effects of salinity on digestive enzyme activity of Pagrosomus major young fish. Journal of Xiamen University (Natural Science), 37 (5): 754–756 (in Chinese).

    Google Scholar 

  • Chen, S. L., Zhang, G. J., Shao, C. W., Huang, Q. F., Liu, G., Zhang, P., Song, W. T., An, N., Chalopin, D., Volff, J. N., Hong, Y. H., Li, Q. Y., Sha, W. T., Zhou, H. L., Xie, M. S., Yu, Q. L., Liu, Y., Xiang, H., Wang, N., Wu, K., Yang, C. G., Zhou, Q., Liao, X. L., Yang, L. F., Hu, Q. M., Zhang, J. L., Meng, L., Jin, L. J., Tian, Y. S., Lian, J. M., Yang, J. F., Miao, G. D., Liu, S. S., Liang, Z., Yan, F., Li, Y. Z., Sun, B., Zhang, H., Zhang, J., Zhu, Y., Du, M., Zhao, Y. M., Schertl, M., Tian, Q. S., and Wang, J., 2014. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to benthic life. Nature Genetics, 46 (3): 253–260.

    Article  Google Scholar 

  • Chinnusamy, V., and Zhu, J. K., 2009. Epigenetic regulation of stress responses in plants. Plant Biology, 12: 1–7.

    Google Scholar 

  • Choe, J., 2008. DNA Methylation in development. Journal of Medical Genetics, 5: 100–104.

    Google Scholar 

  • Deng, S. P., and Chen, S. L., 2008. Molecular cloning, characterization and RT-PCR expression analysis of Dmrt1a from half-smooth tongue-sole, Cynoglossus semilaevis. Journal of Fishery Sciences of China, 15 (4): 576–585.

    Google Scholar 

  • Deng, S. P., Chen, S. L., Xu, J. Y., and Liu, B. W., 2009. Molecular cloning, characterization and expression analysis of gonadal P450 aromatase in the half-smooth tongue sole, Cynoglossus semilaevis. Aquaculture, 287: 211–218.

    Article  Google Scholar 

  • Dong, X. L., Chen, S. L., Ji, X. S., Ji, X. S., and Shao, C. W., 2011. Molecular cloning, characterization and expression analysis of Sox9a and Foxl2 genes in half-smooth tongue sole (Cynoglossus semilaevis). Acta Oceanologica Sinica, 30: 68–77.

    Article  Google Scholar 

  • Ehrlich, M., Gama-Sosa, M. A., Huang, L. H., Midgett, R. M., Kuo, K. C., McCune, R. A., and Gehrke, C., 1982. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Research, 10: 2709–2721.

    Article  Google Scholar 

  • Finnegan, E. J., Peacock, W. J., and Dennis, E. S., 2000. DNA methylation, A key regulation of plant development and other processes. Current Opinion in Genetics & Development, 10: 217–223.

    Article  Google Scholar 

  • Fitzpatrick, S. L., and Richards, J. S., 1991. Regulation of cytochrome P450 aromatase messenger ribonucleic acid and activity by steroids and gonadotropins in rat granulosa cells. Endocrinology, 129: 1452–1462.

    Article  Google Scholar 

  • Fukada, S., Tanaka, M., and Lwaya, M., 1995. The Sox gene family and its expression during embryogenesis in the teleost fish, medaka (Oryzias latipes). Development Growth & Differentiation, 37 (4): 379–385.

    Article  Google Scholar 

  • Gama-Sosa, M. A., Wang, R. Y., Kuo, K. C., Gehrke, C. W., and Ehrlich, M., 1983. The 5-methylcytosine content of highly repeated sequences in human DNA. Nucleic Acids Research, 11: 3087–3095.

    Article  Google Scholar 

  • Grunau, C., Hindermann, W., and Rosenthal, A., 2000. Largescale methylation analysis of human genomic DNA reveals tissue-specific differences between the methylation profiles of genes and pseudo genes. Human Molecular Genetics, 9 (18): 2651–2663.

    Article  Google Scholar 

  • Guo, G. P., Yuan, J. L., Wu, X. L., and Gu, X. P., 2011. DNA methylation and its application in plant research. Journal of Plant Genetic Resources, 12 (3): 425–430 (in Chinese).

    Google Scholar 

  • Guo, T. T., Sun, G. H., Yang, J. M., Zhao, Q., and Li, X. Y., 2013. MSAP analysis of genome DNA methylation in different tissues of Apostichopus Japonicus. Oceanologia et Limnologia Sinica, 44 (1): 77–82 (in Chinese).

    Google Scholar 

  • Habu, Y., Kakutani, T., and Paszkowski, J., 2001. Epigenetic developmental mechanisms in plants: Molecules and targets of plant epigenetic regulation. Current Opinion in Genetics & Development, 11: 215–220.

    Article  Google Scholar 

  • Hackett, J. A., Reddington, J. P., Nestor, C. E., Dunican, D. S., Branco, M. R., Reichmann, J., Reik, W., Surani, M. A., Adams, I. R., and Meehan, R. R., 2012. Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. Development, 139 (19): 3623–3632.

    Article  Google Scholar 

  • Hashida, S. N., Uchiyama, T., Martin, C., Kishima, Y., Sano, Y., and Mikami, T., 2006. The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell, 18 (1): 104–118.

    Article  Google Scholar 

  • Henckel, A., and Arnaud, P., 2010. Genome-wide identification of new imprinted genes. Comparative and Functional Genomics, 9: 304–314.

    Article  Google Scholar 

  • Ito, M., Ishikawa, M., Suzuki, S., Takamatsu, N., and Shiba, T., 1995. A rainbow trout SRY-type gene expressed in pituitary glands. Febs Letters, 377 (1): 37–40.

    Article  Google Scholar 

  • Jiang, Q., Yu, H., Kong, L. F., and Li, Q., 2014. Analysis of DNA methylation in different tissues of the Pacific oyster (Crassostrea gigas) with the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP). Journal of Fishery Sciences of China, 21 (4): 676–683 (in Chinese).

    Google Scholar 

  • Keyte, A. L., Percifield, R., Liu, B., and Wendel, J. F., 2006. Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). Journal of Heredity, 97 (5): 444–450.

    Article  Google Scholar 

  • Koshiishi, Y., 1986. Effect of salinity on food intake, growth and feed efficiency of chum salmon, Oncorhynchus keta (Walbaum), and ayu, Plecoglossus altivelis Temminck et Schlegel. Bull Japan Sea Region Fish Research, 36: 1–14.

    Google Scholar 

  • Kovalchuk, O., Burke, P., Arkhipov, A., Kuchma, N., James, S. J., Kovalchukl, L., and Pogribny, L., 2003. Genome hypermethylation in Pinus silvestris of Chernobyl-Amechanism for radiation adaptation? Mutation Research, 529: 13–20.

    Article  Google Scholar 

  • Laia, N. M., Jordi, V., Laia, R., Noelia, D., Arantxa, G., Luciano, D. C., and Francesc, P., 2011. DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genetics, 7 (12): e1002447.

    Article  Google Scholar 

  • Leutwiler, L. S., Hough-Evans, B. R., and Meyerowitz, E. M., 1984. The DNA of Arabidopsis thaliana. Molecular & General Genetics, 194: 15–23.

    Article  Google Scholar 

  • Li, W., Liu, H., Cheng, Z. J., Su, Y. H., Han, H. N., Zhang, Y., and Zhang, X. S., 2011. DNA methylation and histone modifications regulated enovo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genetics, 7 (8): E1002243.

    Article  Google Scholar 

  • Liao, X. L., Ma, H. Y., Xu, G. B., Shao, C. W., Tian, Y. S., Ji, X. S., Yang, J. F., and Chen, S. L., 2009. Construction of a genetic linkage map and mapping of a female-specific DNA marker in half-smooth tongue sole (Cynoglossus semilaevis). Marine Biotechnology, 11: 699–709.

    Article  Google Scholar 

  • Likongwe, J. S., Stecko, T. D., Stauffer Jr., J. R., and Carline, R. F., 1996. Combined effects of water temperature and salinity on growth and feed utilization of juvenile Nile tilapia Oreochromis niloticus (Linneus). Aquaculture, 146: 37–46.

    Article  Google Scholar 

  • Liu, J., 2009. Study on the level of genome methylation of adipose and muscle tissues in DLY pigs. Master thesis. Sichuan Agriculture University (in Chinese with English abstract).

    Google Scholar 

  • Liu, W. J., Zhang, L. Y., Shao, C. W., Wang, K. L., Qi, Q., Chen, S. L., and Wen, H. S., 2014. Cloning and expression analysis of Gadd45g3 in half-smooth tongue sole (Cynoglossus semilaevis). Journal of Fishery Sciences of China, 21 (5): 863–871 (in Chinese).

    Google Scholar 

  • Liu, W., Zhi, B. J., Zhan, P. R., Guan, H. H., and Qin, D. L., 2010. Effects of salinity on haematological biochemistrical indices and liver tissue in juvenile Oncorhynchus keta. Chinese Journal of Applied Ecology, 21 (9): 2411–2417 (in Chinese).

    Google Scholar 

  • Liu, Y. J., 2014. A study on salt tolerance related genes of Oreochromis mossambicus, O. hornorum and their hybrids. Master thesis. Shanghai Ocean University in China (in Chinese with English abstract).

    Google Scholar 

  • Lujambio, A., Calin, G. A., Villanueva, A., Ropero, S., Sánchez-Céspedes, M., Blanco, D., Montuenga, L. M., Rossi, S., Nicoloso, M. S., Faller, W. J., Gallagher, W. M., Eccles, S. A., Croce, C. M., and Esteller, M., 2008. A microRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy Sciences of the United States of America, 105: 13556–13561.

    Article  Google Scholar 

  • Ma, J. D., Li, M. Z., Zhou, S. L., Zhou, C. W., and Li, X. W., 2012. Methylation-sensitive amplification polymorphism analysis of fat and muscle tissues in pigs. Genetics and Molecular Research, 11 (3): 3505–3510 (in Chinese).

    Article  Google Scholar 

  • Mastan, S. G., Rathore, M. S., Bhatt, V. D., and Chikara, Y. J., 2012. Assessment of changes in DNA methylation by methylation-sensitive amplification polymorphism in Jatropha curcas L. subjected to salinity stress. Gene, 508: 125–129.

    Article  Google Scholar 

  • Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T., Morrey, C. E., Shibata, N., Asakawa, S., Shimizu, N., Hori, H., Hamaguchi, S., and Sakaizumi, M., 2002. DMY is a Y specific DM-domain gene required for male development in the medaka fish. Nature, 417 (6888): 556–563.

    Article  Google Scholar 

  • McGrath, J., and Solter, D., 1984. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 37: 179–183.

    Article  Google Scholar 

  • Nakamoto, M., Suzuki, A., Matsuda, M., Nagahama, Y., and Shibata, N., 2005. Testicular type Sox9 is not involved in sex determination but might be in the development of testicular structures in the medaka, Oryzias latipes. Biochemical and Biophysical Research Communications, 333 (3): 729–736.

    Article  Google Scholar 

  • Navarro-Martín, L., Viñas, J., Ribas, L., Díaz, N., Gutiérrez, A., Di Croce, L., and Piferrer, F., 2011. DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genetics, 7 (12): e1002447.

    Article  Google Scholar 

  • Pilsner, J. R., Liu, X., Ahsan, H., Ilievski, V., Slavkovich, V., Levy, D., Factor-Litvak, P., Graziano, J. H., and Gamble, M. V., 2007. Genomic methylation of peripheral blood leukocyte DNA: Influences of arsenic and folate in Bangladeshi adults. American Society for Clinical Nutrition, 86 (4): 1179–1186.

    Google Scholar 

  • Pisam, M., and Rambourg, A., 1991. Mitochondria-rich cells in the gill epithelium of teleost fishes: An ultrastructural approach. International Review Cytology, 130 (4): 191–232.

    Article  Google Scholar 

  • Raymond, C. S., Shamu, C. E., Shen, M. M., Seifert, K. J., Hirsch, B., Hodgkin, J., and Zarkower, D., 1998. Evidence for evolutionary conservation of sex-determining genes. Nature, 391 (6668): 691–695.

    Article  Google Scholar 

  • Shan, C. H., Zhong, M., Liu, W., Guo, Z. F., Niu, J. S., and Zhou, Q. X., 2011. Effects of cadmium stress on MLH1 promoter methylation in Arabidopsis thaliana. Plant Physiology Journal, 47 (3): 298–304.

    Google Scholar 

  • Shan, X. H., Wang, X. Y., Yang, G., Wu, Y., Su, S. Z., Li, S. P., Liu, H. K., and Yuan, Y. P., 2013. Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylation-sensitive amplified polymorphisms. Journal of Plant Biology, 56: 32–38.

    Article  Google Scholar 

  • Smith, C. A., Roeszler, K. N., Ohnesorg, T., Cummins, D. M., Farlie, P. G., Doran, T. J., and Sinclair, A. H., 2009. The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature, 461 (7261): 267–271.

    Article  Google Scholar 

  • Song, F., Smith, J. F., Kimura, M. T., Morrow, A. D., Matsuyama, T., Nagase, H., and Held, W. A., 2005. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proceedings of the National Academy Sciences of the United States of America, 102 (9): 3336–3341.

    Article  Google Scholar 

  • Stromqvist, M., Tooke, N., and Brunstrom, B., 2010. DNA methylation levels in the 5’ flanking region of the vitellogenin I gene in liver and brain of adult zebrafish (Danio rerio)-sex and tissue differences and effects of 17alpha-ethinylestradiol exposure. Aquatic Toxicology, 98: 275–81.

    Article  Google Scholar 

  • Sun, Y., Hou, R., Fu, X., Sun, C., Wang, S., Wang, C., Li, N., Zhang, L., and Bao, Z., 2014. Genome-wide analysis of DNA methylation in five tissues of Zhikong Scallop, Chlamys farreri. PLoS One, 9 (1): e86232.

    Article  Google Scholar 

  • Tang, S. Q., Zhang, Y., Xu, Q., Sun, D. X., and Yu, Y., 2006. Analysis of methylation level of genome in various tissues of different animals species. Journal of Agricultural Biotechnology, 14 (4): 507–510 (in Chinese).

    Google Scholar 

  • Tannour-Louet, M., Han, S. T., and Corbett, S., 2010. Identification of de novo copy number variants associated with human disorders of sexual development. PLoS One, 5 (10): e15392.

    Article  Google Scholar 

  • Tian, X. L., Wang, G. D., Dong, S. L., and Fang, J. H., 2010. Effects of salinity and temperature on growth, osmophysiology and energy budget of tongue sole (Cynoglossus semilaevis Günther). Journal of Fishery Sciences of China, 17 (4): 772–781 (in Chinese).

    Google Scholar 

  • Tserel, L., Limbach, M., Saare, M., Kisand, K., Metspalu, A., Milani, L., and Peterson, P., 2014. CpG sites associated with NRP1, NRXN2 and miR-29b-2 are hypomethylated in monocytes during ageing. Immunity and Ageing, 11: 1.

    Article  Google Scholar 

  • Tycko, B., 1997. DNA methylation in genomic imprinting. Mutation Research Reviews in Mutation Research, 386: 131–140.

    Article  Google Scholar 

  • Varriale, A., and Bernardi, G., 2006. DNA methylation and body temperature in fishes. Gene, 385: 111–121.

    Article  Google Scholar 

  • Wada, Y., Miyamoto, K., Kusano, T., and Sano, H., 2004. Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Molecular Genetics and Genomics, 271 (6): 658–666.

    Article  Google Scholar 

  • Walsh, C. P., and Bestor, T. H., 1999. Cytosine methylation and mammalian development. Genes & Development, 13 (1): 26–34.

    Article  Google Scholar 

  • Wang, Y. F., and Zhu, X. H., 2002. A review on impact of salinity on patterns of fish ecophysiology. Studia Marina Sinica, 44: 151–158 (in Chinese).

    Google Scholar 

  • Wang, Y., Lu, J. J., Liu, P., Gao, B. Q., Li, J., and Chen, P., 2014. Cloning and characterization of chloride intracellular channel gene and its expression under low salinity stress in Portunus trituberculatus. Oceanologia et Limnologia Sinica, 45: 1360–1366.

    Google Scholar 

  • Wang, Z. S., Huang, J. T., and Peng, B., 2003. Studies on critical salinity of survival and suitable growth salinity of Cynoglossus semilaevis Günther. Modern Fisheries Information, 18 (12): 18–20 (in Chinese).

    Google Scholar 

  • Watanabe, W. O., Ernst, D. H., Chasar, M. P., Wicklund, R. I., and Olla, B. L., 1993. The effects of temperature and salinity on growth and feed utilization of juvenile, sex-reversed male Florida red tilapia cultured in a recirculating system. Aquaculture, 112: 309–320.

    Article  Google Scholar 

  • Wen, A. Y., You, F., Sun, P., Li, J., Xu, D. D., Wu, Z. H., Ma, D. Y., and Zhang, P. J., 2014. CpG methylation of dmrt1 and cyp19a promoters in relation to their sexual dimorphic expression in the Japanese flounder Paralichthys olivaceus. Journal of Fish Biology, 84: 193–205.

    Article  Google Scholar 

  • Wu, C. T., and Morris, J. R., 2001. Genes, genetics and epigenetics: A correspondence. Science, 293: 1103–1105.

    Article  Google Scholar 

  • Xie, G. S., Liu, S. K., Takano, T., and Zhang, D. P., 2005. Effects of salt and alkali stress on differential expression of genes in rice seedlings. Chinese Journal of Applied & Environmental Biology, 11 (2): 129–133.

    Google Scholar 

  • Xu, Q., Zhang, Y., Sun, D. X., Wang, Y. C., Tang, S. Q., and Zhao, M., 2011. Analysis of DNA methylation in different chicken tissues with MSAP. Hereditas (Beijing), 33 (6): 620–626 (in Chinese).

    Article  Google Scholar 

  • Yaish, M. W., Peng, M., and Rothstein, S. J., 2014. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP). Arabidopsis Protocols Springer, 285–298.

    Google Scholar 

  • Yano, S., Ghosh, P., Kusaba, H., Buchholz, M., and Longo, D. L., 2003. Effect of promoter methylation on the regulation of IFN-gamma gene during in vitro differentiation of human peripheral blood T cells into a Th2 population. Journal of Immunology, 171 (5): 2510–2516.

    Article  Google Scholar 

  • Zhang, H., Chen, S. L., Liu, Y., Wen, H. S., and Zhu, Y., 2014. WT1a gene molecular cloning and expression analysis during gender differentiation in half-smooth tongue sole (Cynoglossus semilaevis). Journal of Fishery Sciences of China, 21 (1): 26–36 (in Chinese).

    Google Scholar 

  • Zhao, Y., Chen, M. Y., Storey, K. B., Sun, L. N., and Yang, H. S., 2015. DNA methylation levels analysis in four tissues of sea cucumber Apostichopus japonicus based on fluorescence-labeled methylation-sensitive amplified polymorphism (FMSAP) during aestivation. Comparative Biochemistry and Physiology Part B, 181: 26–32.

    Article  Google Scholar 

  • Ziller, M. J., Gu, H., Müller, F., Donaghey, J., Tsai, L. T., Kohlbacher, O., DeJager, P. L., Rosen, E. D., Bennett, D. A., Bernstein, B. E., Gnirke, A., and Meissner, A., 2013. Charting a dynamic DNA methylation landscape of the human genome. Nature, 500 (7463): 477–481.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Shangdong Dongying Farm for providing the animals. This research was supported by State 863 High-Technology R&D Project of China (2012AA10A403), Natural Science Foundation of Shandong Province, China (ZR2014CM018) and the National Nature Science Foundation of China (31672642). It is appreciated that the comments from editors and reviewers have greatly improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., He, F., Wen, H. et al. Analysis of DNA methylation level by methylation-sensitive amplification polymorphism in half smooth tongue sole (Cynoglossus semilaevis) subjected to salinity stress. J. Ocean Univ. China 16, 269–278 (2017). https://doi.org/10.1007/s11802-017-3156-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-017-3156-4

Key words

Navigation