Skip to main content
Log in

Effects of temperature, salinity, light intensity, and pH on the eicosapentaenoic acid production of Pinguiococcus pyrenoidosus

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The effects of temperature, light intensity, salinity, and initial pH on the growth and fatty acid composition of Pinguiococcus pyrenoidosus 2078 were studied for eicosapentaenoic acid (EPA) production potential. The fatty acid composition was assayed by gas chromatography-mass spectrometry, which indicated that the main fatty acids were C14:0, C16:0 and EPA. The highest EPA percentage 20.83% of total fatty acids was obtained at 20°C with the temperature being set at 20, 24, and 28°C. Under different salinities and light intensities, the highest percentages of total polyunsaturated fatty acids (PUFAs) and EPA were 17.82% and 31.37% of total fatty acids, respectively, which were achieved at salinity 30 and 100 μmol photon m−2s−1 illumination. The highest percentages of total PUFAs and EPA were 38.75% and 23.13% of total fatty acids, respectively, which were reached at an initial pH of 6 with the test range being from 5.0 to 9.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PUFAs:

polyunsaturated fatty acids

EPA:

eicosapentaenoic acid

DHA:

docosahexaenoic acid

MUFAs:

monounsaturated fatty acids

SFAs:

saturated fatty acids

References

  • Ackman, R. G., Tocher, C. S., and McLachlan, J., 1968. Marine phytoplankter fatty acids. Journal of Fisheries Research Board of Canada, 25: 1603–1620.

    Article  Google Scholar 

  • Andersen, R. A., Potter, D., and Bailey, J. C., 2002. Pinguiococcus pyrenoidosus gen.et sp. nov. (Pinguiophyceae), a new marine coccoid alga. Phycological Research, 50: 57–65.

    Article  Google Scholar 

  • Bigogno, C., Khozin-Goldberg, I., and Cohena, Z., 2002. Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebuxiophyceae, Chlorophyta). Phytochemistry, 60: 135–143.

    Article  Google Scholar 

  • Chihib, N. E., Tierny, Y., Mary, P., and Hornez, J. P., 2005. Adaptational changes in cellular fatty acid branching and unsaturation of Aeromonas species as a response to growth temperature and salinity. International Journal of Food Microbiology, 102: 113–119.

    Article  Google Scholar 

  • Cohen, Z., Norman, H. A., and Heimer, Y. M., 1995. Microalgae as a source of ω-3 fatty acids. In: Plants in Human Nutrition. Simopoulos, A. P., ed., Vol.77, Karger, Basel, 1–32.

    Google Scholar 

  • Dervon, C. A., Baksaas, I., and Krokan, H. E., 1993. Omega-3 Fatty acids: Metabolism and Biological Effects. Birkhauser Verlag, Basel, 87–343.

    Google Scholar 

  • Ginzber, A., Cohen, M., Sod-Moriah, U. A., Shany, S., Rosenstrauch, A., and Arad, S. M., 2000. Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. Journal of Applied Phycology, 12: 325–330.

    Article  Google Scholar 

  • Guedes, A. C., Meireles, L. A., Amaro, H. M., and Malcata, F. X., 2010. Change in lipid class and fatty acid composition of cultures of Pavlova lutheri, in response to light intensity. Journal of the American Oil Chemists’ Society, 87: 791–801.

    Article  Google Scholar 

  • Guil-Guerrer, J. L., Ei-HassanI, B., and Fuentes, M. M. R., 2001. Eicosapentaenoic and arachidonic acids purification from the red microalga Porphyridium cruentum. Bioseparation, 9: 299–306.

    Article  Google Scholar 

  • Guillard, R. R. L., 1975. Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrates. Smith, W. L., and Chanley, M. H., eds., Plenum Press, New York, 29–60.

    Google Scholar 

  • Guschina, I. A., and Harwood, J. L., 2006. Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45: 160–186.

    Article  Google Scholar 

  • Harwood, J. L., 1998. Membrane lipids in algae. In: Lipids in Photosynthesis: Structure, Function, and Genetics. Siegenthaler, P.-A., and Murata, N., eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 53–64.

    Google Scholar 

  • Hoffmann, M., Marxen, K., Schulz, R., and Vanselow, K. H., 2010. TFA and EPA productivities of Nannochloropsis salina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments. Marine Drugs, 8(9): 2526–2545.

    Article  Google Scholar 

  • Hua, X. M., Zhou, H. Q., and Ding, Z. P., 1999. The effects of temperature and light intensity on the growth and the fatty acids composition of microalgae. Journal of shanghai fisheries university, 8: 309–315 (in Chinese with English abstract).

    Google Scholar 

  • James, C. M., Al-Hinty, S., and Salman, A. E., 1989. Growth and ω3 fatty acid and amino acid composition of microalgae under different temperature regimes. Aquaculture, 77: 337–351.

    Article  Google Scholar 

  • Kawachi, M., Inouye, I., and Honda, D., 2002. Pinguiophyceae Pinguiococcus pyrenoidosus. Phycological Research, 50: 31–47.

    Article  Google Scholar 

  • Lu, C., Rao, K., Hall, D., and Vonshak, A., 2001. Production of eicosapentaenoic acid (EPA) in Monodus subterraneus grown in a helical tubular photobioreactor as affected by cell density and light intensity. Journal of Applied Phycology, 13: 517–522.

    Article  Google Scholar 

  • Milledge, J. J., 2011. Commercial application of microalgae other than as biofuels: a brief review. Reviews in Environmental Science and Biotechnology, 10: 31–41.

    Article  Google Scholar 

  • Molina, G. E., and Sánchez, P. J. A., 1992. EPA from Isochrysis galbana. Growth conditions and productivity. Process Biochemistry, 27: 299–305.

    Article  Google Scholar 

  • Mortensen, S. H., Borsheim, K. Y., Rainuzzo, J. K., and Knutsen, G., 1988. Fatty acid and elemental composition of the marine diatom Chaetoceros gracilis Schutt. Effects of silicate deprivation, temperature and light intensity. Journal of Experimental Marine Biology Ecology, 122: 173–185.

    Article  Google Scholar 

  • Nuutila, A. M., Aura, A. M., Kiesvaara, M., and Kauppinen, V., 1997. The effect of salinity, nitrate concentration, pH, and temperature on eicosapentaenoic acid (EPA) production by the red unicellular alga Porphyridium purpureum. Journal of Biotechnology, 55: 55–63.

    Article  Google Scholar 

  • Oliverira, M. A. S., Monteiro, M. P., Robbs, P. G., and Leite, S. G., 1999. Growth and chemical composition of Spirulena maxima and Spirulena platensis biomass at different temperatures. Aquaculture International, 7: 261–275.

    Article  Google Scholar 

  • Renaud, S. M., Parry, D. L., Thinh, L-V., Kuo, C., Padovan, A., and Sammy, N., 1991. Effect of light intensity on the peroximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. Journal of Applied Phycology, 3: 43–53.

    Article  Google Scholar 

  • Renaud, S. M., Zhou, H. C., Parry, D. L., Loung-van, T., and Woo, K. C., 1995. Effects of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgse Isochrysis sp., Nitzschiaclosterium, Nitzschia paleacea, and commercial species Isochrysis sp., (clone T.ISO). Journal of Applied Phycology, 7: 595–602

    Article  Google Scholar 

  • Richmond, A. E., 1986. Microalgaculture. Critical Reviews in Biotechnology, 4: 368–438.

    Google Scholar 

  • Sajbidor, J., 1997. Effect of some environmental factors on the content and composition of microbial membrane lipids. Critical Reviews in Biotechnology, 17: 87–103.

    Article  Google Scholar 

  • Sargent, J. R., Henderson, R. J., and Tocher, D. R., 1989. The lipids. In: Fish Nutrion. Halver, H., eds., 2nd edition, Academic Press, London, 153–218.

    Google Scholar 

  • Satu, N., and Murata, N., 1980. Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis. The central role of diacylmonoalactosylglycerol in thermo adaption. Biochimica et Biophysica Acta, 619: 353–365.

    Google Scholar 

  • Seto, A., Wang, H. L., and Hesseltine, C. W., 1984. Culture conditions affect eicosapenoic acid content of Chlorella minutissima. Journal of the American Oil Chemists’ Society, 61: 892–894.

    Article  Google Scholar 

  • Simopoulus, A. P., Kifer, R. R., Martin, R. E., and Barlaw, S. M., 1991. Health effects of ω-3 polyunsaturated fatty acids in seafoods. World Review of Nutrition and Dietetics, 66: 1–592.

    Google Scholar 

  • Suutari, M., and Laakso, S., 1994. Microbial fatty acids and thermaladaptation. Critical Reviews in Microbilology, 20: 285–328.

    Article  Google Scholar 

  • Teshima, S., Yamasaki, S., Kanazawa, A., and Hirata, H., 1983. Effects of water temperature and salinity on eicosapentaenoic acid level of marine Chlorella. Bulletin of the Japanese Society of Scientific Fisheries, 49: 805.

    Google Scholar 

  • Thompson, P. A., 1999. The response of growth and biochemical composition to variation in daylength, temperature and irradiance in the marine diatom Thalassiosira pseudonana (Bacillariophaceae). Journal of Phycology, 35: 1215–1223.

    Article  Google Scholar 

  • Thompson, P. A., Guo, M., and Harrison, P. J., 1992a. Effects of variation of temperature: I. On the biochemical composition of eight species of marine phytoplankton. Journal of Phycology, 28: 481–488.

    Article  Google Scholar 

  • Thompson, P. A., Guo, M., Harrison, P. J., and Whyte, J. N. C., 1992b. Effects of variation in temperature: II. On the fatty acid composition of eight species of marine phytoplankton. Journal of Phycology, 28: 488–497.

    Article  Google Scholar 

  • Thompson, P. A., Harrison, P. J., and Whyte, J. N. C., 1990. Influence of irradiance on the fatty acid composition of phytoplankton. The Journal of Physiology, 26: 278–288.

    Google Scholar 

  • Tomaselli, L., Giovannetti, L., Sacchi, A., and Bochi, F., 1988. Effects of temperature on growth and biochemical composition in Spirulina platensis strain M2. In: Algal Biotechnology. Stadler, T., et al., eds., Elsevier Applied Science, London, 303–314.

    Google Scholar 

  • Wen, Z. Y., and Chen, F., 2003. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology Advances, 21: 273–294 (in Chinese with English abstract).

    Article  Google Scholar 

  • Xu, X. Q., and Beardall, J., 1997. Effect of salinity on fatty acid composition of a green microalgal from an Antarctic hypersaline lake. Phytochemistry, 454: 655–658 (in Chinese with English abstract).

    Article  Google Scholar 

  • Yongmanitchai, W., and Ward, O. P., 1989. Omega-3 fatty acids: alternative sources of production. Process Biochemistry, 24: 117–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengwu Zhang or Aifen Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sang, M., Wang, M., Liu, J. et al. Effects of temperature, salinity, light intensity, and pH on the eicosapentaenoic acid production of Pinguiococcus pyrenoidosus . J. Ocean Univ. China 11, 181–186 (2012). https://doi.org/10.1007/s11802-012-1868-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-012-1868-z

Key words

Navigation