Skip to main content
Log in

Attractors of trees of maps and of sequences of maps between spaces with applications to subdivision

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

An extension of the Banach fixed-point theorem for a sequence of maps on a complete metric space (Xd) has been presented in a previous paper. It has been shown that backward trajectories of maps \(X\rightarrow X\) converge under mild conditions and that they can generate new types of attractors such as scale-dependent fractals. Here we present two generalizations of this result and some potential applications. First, we study the structure of an infinite tree of maps \(X\rightarrow X\) and discuss convergence to a unique “attractor” of the tree. We also consider “staircase” sequences of maps, that is, we consider a countable sequence of metric spaces \(\{(X_i,d_i)\}\) and an associated countable sequence of maps \(\{T_i\}\), \(T_i:X_{i}\rightarrow X_{i-1}\). We examine conditions for the convergence of backward trajectories of the \(\{T_i\}\) to a unique attractor. An example of such trees of maps are trees of function systems leading to the construction of fractals which are both scale-dependent and location dependent. The staircase structure facilitates linking all types of linear subdivision schemes to attractors of function systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barnsley, M.F.: Fractals Everywhere. Academic Press, Orlando (1988)

    MATH  Google Scholar 

  2. Barnsley, M.F.: Super Fractals. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  3. Barnsley, M.F., Elton, J.H., Hardin, D.P.: Recurrent iterated function systems. Constr. Approx. 5(1), 3–31 (1989)

    Article  MathSciNet  Google Scholar 

  4. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Am. Math. Soc. 93, 453 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Conti, C., Dyn, N., Manni, C., Mazure, M.-L.: Convergence of univariate non-stationary subdivision schemes via asymptotic similarity. Comput. Aided Geometr. Des. 37, 1–8 (2015)

    Article  MathSciNet  Google Scholar 

  6. Dyn, N., Kounchev, O., Levin, D., Render, H.: Regularity of generalized Daubechies wavelets reproducing exponential polynomials with real-valued parameters. Appl. Comput. Harm. Anal. 37(2), 288–306 (2014)

    Article  MathSciNet  Google Scholar 

  7. Dyn, N., Levin, D., Gregory, J.A.: A 4-point interpolatory subdivision scheme for curve design. Comput. Aided Geometr. Des. 4(4), 257–268 (1987)

    Article  MathSciNet  Google Scholar 

  8. Dyn, N., Levin, D.: Analysis of asymptotically equivalent binary subdivision schemes. J. Math. Anal. Appl. 193(2), 594–621 (1995)

    Article  MathSciNet  Google Scholar 

  9. Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numer. 20, 1–72 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Dyn, N., Levin, D., Yoon, J.: A new method for the analysis of univariate nonuniform subdivision schemes. Constr. Approx. 40(2), 173–188 (2014)

    Article  MathSciNet  Google Scholar 

  11. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  12. Fisher, Y.: Fractal Image Compression: Theory and Application. Springer, New York (1995)

    Book  Google Scholar 

  13. Levin, D.: Using Laurent polynomial representation for the analysis of non-uniform binary subdivision schemes. Adv. Comput. Math. 11, 41–54 (1999)

    Article  MathSciNet  Google Scholar 

  14. Levin, D., Dyn, N., Viswanathan, P.: Non-stationary versions of fixed-point theory, with applications to fractals and subdivision. J. Fixed Point Theory Appl. 21, 1–25 (2019)

    Article  MathSciNet  Google Scholar 

  15. Massopust, P.R.: Fractal functions and their applications. Chaos Solitons Fractals 8(2), 171–190 (1997)

    Article  MathSciNet  Google Scholar 

  16. Navascues, M.A.: Fractal approximation. Complex Anal. Oper. Theory 4(4), 953–974 (2010)

    Article  MathSciNet  Google Scholar 

  17. Prautzsch, H., Boehm, W., Palusny, M.: Bézier and B-Spline Techniques. Springer, Germany (2002)

    Book  Google Scholar 

  18. Schaefer, S., Levin, D., Goldman, R.: Subdivision schemes and attractors. In: Desbrun, M., Pottmann, H. (eds) Eurographics Symposium on Geometry Processing (2005). Eurographics Association 2005, Aire-la-Ville Switzerland. ACM International Conference Proceeding Series 225, pp. 171–180 (2005)

  19. Viswanathan, P., Chand, A.K.B.: Fractal rational functions and their approximation properties. J. Approx. Theory 185, 31–50 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Massopust.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyn, N., Levin, D. & Massopust, P. Attractors of trees of maps and of sequences of maps between spaces with applications to subdivision. J. Fixed Point Theory Appl. 22, 14 (2020). https://doi.org/10.1007/s11784-019-0750-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-019-0750-7

Keywords

Mathematics Subject Classification

Navigation