Skip to main content
Log in

New extragradient methods for solving variational inequality problems and fixed point problems

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce two new iterative algorithms for finding a common element of the set of fixed points of a quasi-nonexpansive mapping and the set of solutions of the variational inequality problem with a monotone and Lipschitz continuous mapping in real Hilbert spaces, by combining a modified Tseng’s extragradient scheme with the Mann approximation method. We prove weak and strong convergence theorems for the sequences generated by these iterative algorithms. The main advantages of our algorithms are that the construction of solution approximations and the proof of convergence of the algorithms are performed without the prior knowledge of the Lipschitz constant of cost operators. Finally, we provide numerical experiments to show the efficiency and advantage of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bot, R.I., Csetnek, E.R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171, 600–616 (2016)

    Article  MathSciNet  Google Scholar 

  2. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148(2), 318–335 (2011)

    Article  MathSciNet  Google Scholar 

  3. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Meth. Softw. 26, 827–845 (2011)

    Article  MathSciNet  Google Scholar 

  4. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  Google Scholar 

  5. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)

    Article  MathSciNet  Google Scholar 

  6. Ceng, L.C., Hadjisavvas, N., Wong, N.C.: Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J. Glob. Optim. 46, 635–646 (2010)

    Article  MathSciNet  Google Scholar 

  7. Ceng, L.C., Yao, J.C.: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwan. J. Math. 10, 1293–1303 (2006)

    Article  MathSciNet  Google Scholar 

  8. Facchinei, F., Pang, J.S.: Finite—Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003)

    MATH  Google Scholar 

  9. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  10. Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)

    Article  MathSciNet  Google Scholar 

  11. He, B.S., Liao, L.Z.: Improvements of some projection methods for monotone nonlinear variational inequalities. J. Optim. Theory Appl. 112, 111–128 (2002)

    Article  MathSciNet  Google Scholar 

  12. Hieu, D.V., Anh, P.K., Muu, L.D.: Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 66, 75–96 (2017)

    Article  MathSciNet  Google Scholar 

  13. Hieu, D.V., Thong, D.V.: New extragradient-like algorithms for strongly pseudomonotone variational inequalities. J. Glob. Optim. 70, 385–399 (2018)

    Article  MathSciNet  Google Scholar 

  14. Hieu, D.V.: Halpern subgradient extragradient method extended to equilibrium problems. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM 111, 823–840 (2017)

    Article  MathSciNet  Google Scholar 

  15. Hieu, D.V., Muu, L.D., Anh, P.K.: Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings. Numer. Algorithms 73, 197–217 (2016)

    Article  MathSciNet  Google Scholar 

  16. Hieu, D.V.: An explicit parallel algorithm for variational inequalities. Bull. Malays. Math. Sci. Soc. (2017). https://doi.org/10.1007/s40840-017-0474-z

  17. Iiduka, H., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and inversestrongly monotone mappings. Nonlinear Anal. 61, 341–350 (2005)

    Article  MathSciNet  Google Scholar 

  18. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)

    Article  MathSciNet  Google Scholar 

  19. Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)

    Article  MathSciNet  Google Scholar 

  20. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  21. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2000)

    MATH  Google Scholar 

  22. Konnov, I.V.: Equilibrium Models and Variational Inequalities. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  23. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomikai Matematicheskie Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  24. Liu, L.S.: Ishikawa and Mann iteration process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194, 114–125 (1995)

    Article  MathSciNet  Google Scholar 

  25. Maingé, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)

    Article  MathSciNet  Google Scholar 

  26. Maingé, P.E., Gobinddass, M.L.: Convergence of one step projected gradient methods for variational inequalities. J. Optim. Theory Appl. 171, 146–168 (2016)

    Article  MathSciNet  Google Scholar 

  27. Malitsky, Y.V., Semenov, V.V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Glob. Optim. 61, 193–202 (2015)

    Article  MathSciNet  Google Scholar 

  28. Malitsky, Y.V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)

    Article  MathSciNet  Google Scholar 

  29. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  Google Scholar 

  30. Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2006)

    Article  MathSciNet  Google Scholar 

  31. Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theor. Appl. 128, 191–201 (2006)

    Article  MathSciNet  Google Scholar 

  32. Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math Anal. Appl. 67, 274–276 (1979)

    Article  MathSciNet  Google Scholar 

  33. Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)

    Article  MathSciNet  Google Scholar 

  34. Reich, S.: Constructive Techniques for Accretive and Monotone Operators. Applied Nonlinear Analysis, pp. 335–345. Academic Press, New York (1979)

    MATH  Google Scholar 

  35. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  Google Scholar 

  36. Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  37. Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)

    Article  MathSciNet  Google Scholar 

  38. Takahashi, W.: Nonlinear Functional Analysis-Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  39. Thong, D.V., Hieu, D.V.: Weak and strong convergence theorems for variational inequality problems. Numer. Algorithms (2017). https://doi.org/10.1007/s11075-017-0412-z

    Article  MathSciNet  Google Scholar 

  40. Thong, D.V., Hieu, D.V.: Modified subgradient extragradient algorithms for variational inequality problems and fixed point problems. Optimization 67, 83–102 (2018)

    Article  MathSciNet  Google Scholar 

  41. Thong, D.V.: Viscosity approximation methods for solving fixed point problems and split common fixed point problems. J. Fixed Point Theory Appl. 19, 1481–1499 (2017)

    Article  MathSciNet  Google Scholar 

  42. Thong, D.V., Hieu, D.V.: An inertial method for solving split common fixed point problems. J. Fixed Point Theory Appl. 19, 3029–3051 (2017)

    Article  MathSciNet  Google Scholar 

  43. Thong, D.V., Hieu, D.V.: Modified subgradient extragradient method for inequality variational problems. Numer. Algorithms (2017). https://doi.org/10.1007/s11075-017-0452-4

  44. Thong, D.V.: Viscosity approximation method for Lipschitzian pseudocontraction semigroups in Banach spaces. Vietnam J. Math. 40, 515–525 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Thong, D.V.: Viscosity approximation method for nonexpansive semigroups in Banach spaces. Vietnam J. Math. 42, 63–72 (2014)

    Article  MathSciNet  Google Scholar 

  46. Thong, D.V., Hieu, D.V.: A new approximation method for finding common fixed points of families of demicontractive operators and applications. J. Fixed Point Theory Appl. 20(2), 27 (2018). Art. 73

    Article  MathSciNet  Google Scholar 

  47. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  Google Scholar 

  48. Wang, F.H., Xu, H.K.: Weak and strong convergence theorems for variational inequality and fixed point problems with Tseng’s extragradient method. Taiwan. J. Math. 16, 1125–1136 (2012)

    Article  MathSciNet  Google Scholar 

  49. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  MathSciNet  Google Scholar 

  50. Yao, Y., Marino, G., Muglia, L.: A modified Korpelevich’s method convergent to the minimum-norm solution of a variational inequality. Optimization 63, 559–569 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Simeon Reich and the referee(s) for their comments on the manuscript which helped us very much in improving and presenting the original version of this paper. The second author was partially supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the project 101.01-2017.315.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duong Viet Thong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thong, D.V., Van Hieu, D. New extragradient methods for solving variational inequality problems and fixed point problems. J. Fixed Point Theory Appl. 20, 129 (2018). https://doi.org/10.1007/s11784-018-0610-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-018-0610-x

Keywords

Mathematics Subject Classification

Navigation