Skip to main content
Log in

Solar evaporation for simultaneous oil-water separation and electricity generation with Janus wood-based absorbers

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Oily wastewater from ocean oil spills endangers marine ecosystems and human health. Therefore, developing an effective and sustainable solution for separating oil-water mixtures is urgent. Interfacial solar photothermal evaporation is a promising approach for the complete separation of two-phase mixtures using only solar energy. Herein, we report a carbonized wood-based absorber with Janus structure of comprising a hydrophobic top-layer and an oleophobic bottom-layer for simultaneous solar-driven oil-water separation and electricity generation. Under sunlight irradiation, the rapid evaporation of seawater will induce a separation of oil-water mixtures, and cause a high salt concentration region underlying the interface, while the bottom “bulk water” maintains in a low salt concentration, thus forming a salinity gradient. Electricity can be generated by salinity gradient power. Therefore, oil-water separation efficiency of > 99% and derived extra electricity power of ∼0.1 W/m2 is achieved under solar radiation, demonstrating the feasibility of oil-water separation and electricity production synchronously directly using solar energy. This work provides a green and cost-effective path for the separation of oil-water mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ahmad A L, Ismail S, Bhatia S (2005). Ultrafiltration behavior in the treatment of Agro-industry effluent: pilot scale studies. Chemical Engineering Science, 60(19): 5385–5394

    Article  CAS  Google Scholar 

  • Alias N H, Jaafar J, Samitsu S, Matsuura T, Ismail A F, Othman M H D, Rahman M A, Othman N H, Abdullah N, Paiman S H, Yusof N, Aziz F (2019). Photocatalytic nanofiber-coated alumina hollow fiber membranes for highly efficient oilfield produced water treatment. Chemical Engineering Journal, 360: 1437–1446

    Article  CAS  Google Scholar 

  • Chen J, Huang Y, Zhang N N, Zou H Y, Liu R Y, Tao C Y, Fan X, Wang Z L (2016). Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nature Energy, 1(10): 16138

    Article  CAS  Google Scholar 

  • Chen M L, Zhu L, Chen J W, Yang F L, Tang C Y Y, Guiver M D, Dong Y C (2020). Spinel-based ceramic membranes coupling solid sludge recycling with oily wastewater treatment. Water Research, 169: 115180

    Article  CAS  Google Scholar 

  • Chen X J, Liu Y Q, Huang G, An C J, Feng R F, Yao Y, Huang W, Weng S Q (2022). Functional flax fiber with UV-induced switchable wettability for multipurpose oil-water separation. Frontiers of Environmental Science & Engineering, 16(12): 153

    Article  CAS  Google Scholar 

  • Cheng X Q, Sun Z K, Yang X B, Li Z X, Zhang Y J, Wang P, Liang H, Ma J, Shao L (2020). Construction of superhydrophilic hierarchical polyacrylonitrile nanofiber membranes by in situ asymmetry engineering for unprecedently ultrafast oil-water emulsion separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 8(33): 16933–16942

    Article  CAS  Google Scholar 

  • Cheryan M, Rajagopalan N (1998). Membrane processing of oily streams. wastewater treatment and waste reduction. Journal of Membrane Science, 151(1): 13–28

    Article  CAS  Google Scholar 

  • Chu Z L, Feng Y J, Seeger S (2015). Oil/water separation with selective superantiwetting/superwetting surface materials. Angewandte Chemie International Edition, 54(8): 2328–2338 https://doi.org/10.1002/anie.201405785

    Article  CAS  Google Scholar 

  • Dou Y H, Tian D L, Sun Z Q, Liu Q N, Zhang N, Kim J H, Jiang L S, Dou X (2017). Fish gill inspired crossflow for efficient and continuous collection of spilled oil. ACS Nano, 11(3): 2477–2485

    Article  CAS  Google Scholar 

  • El Bestawy E, El-Shatby B F, Eltaweil A S (2020). Integration between bacterial consortium and magnetite (Fe3O4) nanoparticles for the treatment of oily industrial wastewater. World Journal of Microbiology & Biotechnology, 36(9): 141

    Article  Google Scholar 

  • Gao T, Wang Y D, Wu X, Wu P, Yang X F, Li Q, Zhang Z Z, Zhang D K, Owens G, Xu H L (2022). More from less: improving solar steam generation by selectively removing a portion of evaporation surface. Science Bulletin, 67(15): 1572–1580

    Article  CAS  Google Scholar 

  • Gao T, Wu X, Wang Y D, Owens G, Xu H L (2021). A hollow and compressible 3D photothermal evaporator for highly efficient solar steam generation without energy loss. Solar RRL, 5(5): 2100053

    Article  CAS  Google Scholar 

  • Ghasemi H, Ni G, Marconnet A M, Loomis J, Yerci S, Miljkovic N, Chen G (2014). Solar steam generation by heat localization. Nature Communications, 5(1): 4449

    Article  CAS  Google Scholar 

  • Gu Y F, Mu X J, Wang P F, Wang X Y, Liu J, Shi J Q, Wei A Y, Tian Y Z, Zhu G S, Xu H R, et al. (2020). Integrated photothermal aerogels with ultrahigh-performance solar steam generation. Nano Energy, 74: 104857

    Article  CAS  Google Scholar 

  • Guo Y H, Zhao X, Zhao F, Jiao Z H, Zhou X Y, Yu G H (2020). Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy & Environmental Science, 13(7): 2087–2095

    Article  CAS  Google Scholar 

  • Hou J W, Ji C, Dong G X, Xiao B W, Ye Y, Chen V (2015). Biocatalytic Janus membranes for CO2 removal utilizing carbonic anhydrase. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(33): 17032–17041

    Article  CAS  Google Scholar 

  • Hu L, Gao S J, Ding X G, Wang D, Jiang J, Jin J, Jiang L (2015a). Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano, 9(5): 4835–4842

    Article  CAS  Google Scholar 

  • Hu X B, Yu Y, Zhou J E, Wang Y Q, Liang J, Zhang X Z, Chang Q B, Song L X (2015b). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476: 200–204

    Article  CAS  Google Scholar 

  • Jafari B, Abbasi M, Hashemifard S A, Sillanpaa M (2020). Elaboration and characterization of novel two-layer tubular ceramic membranes by coating natural zeolite and activated carbon on mullite-aluminazeolite support: application for oily wastewater treatment. Journal of Asian Ceramic Societies, 8(3): 848–861

    Article  Google Scholar 

  • Kuang Y D, Chen C J, He S M, Hitz E M, Wang Y L, Gan W T, Mi R Y, Hu L B (2019). A high-performance self-regenerating solar evaporator for continuous water desalination. Advanced Materials, 31(23): 1900498

    Article  Google Scholar 

  • Kujawinski E B, Kido Soule M C, Valentine D L, Boysen A K, Longnecker K, Redmond M C (2011). Fate of dispersants associated with the deepwater horizon oil spill. Environmental Science & Technology, 45(4): 1298–1306

    Article  CAS  Google Scholar 

  • Li X Q, Min X Z, Li J L, Xu N, Zhu P C, Zhu B, Zhu S N, Zhu J (2018). Storage and recycling of interfacial solar steam enthalpy. Joule, 2(11): 2477–2484

    Article  Google Scholar 

  • Liu Y, Lou J W, Ni M T, Song C Y, Wu J B, Dasgupta N P, Tao P, Shang W, Deng T (2016). Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 8(1): 772–779

    Article  CAS  Google Scholar 

  • Mostefa N M, Tir M (2004). Coupling flocculation with electroflotation for waste oil/water emulsion treatment: optimization of the operating conditions. Desalination, 161(2): 115–121

    Article  CAS  Google Scholar 

  • Neumann O, Feronti C, Neumann A D, Dong A J, Schell K, Lu B, Kim E, Quinn M, Thompson S, Grady N, et al. (2013a). Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 110(29): 11677–11681

    Article  CAS  Google Scholar 

  • Neumann O, Neumann A D, Silva E, Ayala-Orozco C, Tian S, Nordlander P, Halas N J (2015). Nanoparticle-mediated, light-induced phase separations. Nano Letters, 15(12): 7880–7885

    Article  CAS  Google Scholar 

  • Neumann O, Urban A S, Day J, Lal S, Nordlander P, Halas N J (2013b). Solar vapor generation enabled by nanoparticles. ACS Nano, 7(1): 42–49

    Article  CAS  Google Scholar 

  • Ríos G, Pazos C, Coca J (1998). Destabilization of cutting oil emulsions using inorganic salts as coagulants. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 138(2–3): 383–389

    Article  Google Scholar 

  • Scialdone O, D’Angelo A, De Lume E, Galia A (2014). Cathodic reduction of hexavalent chromium coupled with electricity generation achieved by reverse-electrodialysis processes using salinity gradients. Electrochimica Acta, 137: 258–265

    Article  CAS  Google Scholar 

  • Shirazi Y A, Carr E W, Parsons G R, Hoagland P, Ralston D K, Chen J (2019). Increased operational costs of electricity generation in the delaware river and estuary from salinity increases due to sea-level rise and a deepened channel. Journal of Environmental Management, 244: 228–234

    Article  CAS  Google Scholar 

  • Wang X Y, Li X Q, Liu G L, Li J L, Hu X Z, Xu N, Zhao W, Zhu B, Zhu J (2019). An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angewandte Chemie International Edition, 58(35): 12054–12058

    Article  CAS  Google Scholar 

  • Wang Z J, Wang Y, Liu G J (2016). Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric. Angewandte Chemie International Edition, 55(4): 1291–1294

    Article  CAS  Google Scholar 

  • Wang Z X, Han M C, He F, Peng S Q, Darling S B, Li Y X (2020). Versatile coating with multifunctional performance for solar steam generation. Nano Energy, 74: 104886

    Article  CAS  Google Scholar 

  • Wu Z C, Zhang C, Peng K M, Wang Q Y, Wang Z W (2018). Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation. Frontiers of Environmental Science & Engineering, 12(3): 15

    Article  Google Scholar 

  • Xu N, Li J L, Wang Y, Fang C, Li X Q, Wang Y X, Zhou L, Zhu B, Wu Z, Zhu S N, Zhu J (2019). A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Science Advances, 5(7): eaaw7013

    Article  CAS  Google Scholar 

  • Yang H C, Hou J, Chen V, Xu Z K (2016). Janus membranes: exploring duality for advanced separation. Angewandte Chemie International Edition, 55(43): 13398–13407

    Article  CAS  Google Scholar 

  • Yang P H, Liu K, Chen Q, Li J, Duan J J, Xue G B, Xu Z S, Xie W K, Zhou J (2017). Solar-driven simultaneous steam production and electricity generation from salinity. Energy & Environmental Science, 10(9): 1923–1927

    Article  CAS  Google Scholar 

  • Yi G, Chen S, Quan X, Wei G L, Fan X F, Yu H T (2018). Enhanced separation performance of carbon nanotube-polyvinyl alcohol composite membranes for emulsified oily wastewater treatment under electrical assistance. Separation and Purification Technology, 197: 107–115

    Article  CAS  Google Scholar 

  • Yi G, Fan X F, Quan X, Chen S, Yu H T (2019). Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater. Frontiers of Environmental Science & Engineering, 13(2): 23

    Article  Google Scholar 

  • Yu H M, Wang D Y, Jin H Y, Wu P, Wu X, Chu D W, Lu Y, Yang X F, Xu H L (2023). 2D MoN1.2-rGO stacked heterostructures enabled water state modification for highly efficient interfacial solar evaporation. Advanced Functional Materials, 33(24): 2214828

    Article  CAS  Google Scholar 

  • Zhang L F, Fu G K, Zhang Z (2019). Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment. Bioresource Technology, 272: 105–113

    Article  CAS  Google Scholar 

  • Zhang Z, Kong X Y, Xiao K, Xie G H, Liu Q, Tian Y, Zhang H C, Ma J, Wen L P, Jiang L (2016). A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Advanced Materials, 28(1): 144–150

    Article  CAS  Google Scholar 

  • Zhao F, Zhou X Y, Shi Y, Qian X, Alexander M, Zhao X P, Mendez S, Yang R G, Qu L T, Yu G H (2018). Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 13(6): 489–495

    Article  CAS  Google Scholar 

  • Zhao J Y, Wu X, Yu H M, Wang Y D, Wu P, Yang X F, Chu D W, Owens G, Xu H L (2023). Regenerable aerogel-based thermogalvanic cells for efficient low-grade heat harvesting from solar radiation and interfacial solar evaporation systems. EcoMat, 5(3): e12302

    Article  CAS  Google Scholar 

  • Zhao S S, Tao Z, Chen L W, Han M Q, Zhao B, Tian X L, Wang L, Meng F G (2021). An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation. Frontiers of Environmental Science & Engineering, 15(4): 63

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by the National Natural Science Foundation of China (No. 22106016) and the Fellowship of China Postdoctoral Science Foundation (No. 2022M721556).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Yang.

Ethics declarations

Conflict of Interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Highlights

• A protocol is proposed for simultaneous oil/water separation and electricity generation.

• Oil/water separation efficiency achieves > 99% only out of solar energy.

• A derived extra electricity power of ∼0.1 W/m2 is obtained under solar radiation.

• The protocol offers a prospect of solar-driven water treatment and resource recovery.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Fu, Z. & Zhang, Q. Solar evaporation for simultaneous oil-water separation and electricity generation with Janus wood-based absorbers. Front. Environ. Sci. Eng. 18, 15 (2024). https://doi.org/10.1007/s11783-024-1775-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-024-1775-8

Keywords

Navigation