Skip to main content
Log in

Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Biological synthesis of quantum dots (QDs) as an environmental-friendly and facile preparation method has attracted increasing interests. However, it is difficult to distinguish the roles of bio-thiols in QDs synthesis process because of the complex nature in organisms. In this work, the CdSe QDs synthesis conditions in organisms were reconstructed by using a simplified in vitro approach to uncover the roles of two small bio-thiols in the QDs formation. CdSe QDs were synthesized with glutathione (GSH) and L-cysteine (Cys) respectively. Compared with Cys at the same molar concentration, the CdSe QDs synthesized by GSH had a larger and broader particle size distribution with improved optical properties and crystal structure. Furthermore, quantum chemical calculations indicate that the stronger Cd2+ binding capacity of GSH contributed a lot to the CdSe QDs formation despite of the greater capability Cys for selenite reduction. This work clearly demonstrates the different roles of small thiols in the Cd2+ stabilization in the environment and biomimetic QDs synthesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. Journal of Physical Chemistry, 1986, 90(12): 2555–2560

    Article  CAS  Google Scholar 

  2. Shu T, Zhou Z M, Wang H, Liu G H, Xiang P, Rong Y G, Han H W, Zhao Y D. Efficient quantum dot-sensitized solar cell with tunable energy band CdSexS(1-x) quantum dots. Journal of Materials Chemistry, 2012, 22(21): 10525–10529

    Article  CAS  Google Scholar 

  3. Kuang H, Zhao Y, Ma W, Xu L G, Wang L B, Xu C L. Recent developments in analytical applications of quantum dots. TrAC Trends in Analytical Chemistry, 2011, 30(10): 1620–1636

    Article  CAS  Google Scholar 

  4. Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews, 2010, 39(11): 4326–4354

    Article  CAS  Google Scholar 

  5. Zhang Y, Clapp A. Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors (Basel), 2011, 11(12): 11036–11055

    Article  Google Scholar 

  6. Dameron C T, Reese R N, Mehra R K, Kortan A R, Carroll P J, Steigerwald M L, Brus L E, Winge D R. Biosynthesis of cadmiumsulfide quantum semiconductor crystallites. Nature, 1989, 338 (6216): 596–597

    Article  CAS  Google Scholar 

  7. Cui R, Liu H H, Xie H Y, Zhang Z L, Yang Y R, Pang D W, Xie Z X, Chen B B, Hu B, Shen P. Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. Advanced Functional Materials, 2009, 19(15): 2359–2364

    Article  CAS  Google Scholar 

  8. Park T J, Lee S Y, Heo N S, Seo T S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angewandte Chemie International Edition in English, 2010, 49(39): 7019–7024

    Article  CAS  Google Scholar 

  9. Li Y, Cui R, Zhang P, Chen B B, Tian Z Q, Li L, Hu B, Pang D W, Xie Z X. Mechanism-oriented controllability of intracellular quantum dots formation: the role of glutathione metabolic pathway. ACS Nano, 2013, 7(3): 2240–2248

    Article  CAS  Google Scholar 

  10. Patsoukis N, Georgiou C D. Determination of the thiol redox state of organisms: new oxidative stress indicators. Analytical and Bioanalytical Chemistry, 2004, 378(7): 1783–1792

    Article  CAS  Google Scholar 

  11. Hansen R E, Roth D, Winther J R. Quantifying the global cellular thiol-disulfide status. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(2): 422–427

    Article  CAS  Google Scholar 

  12. Zhang J, Wang F, House J D, Page B, Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation. Limnology and Oceanography, 2004, 49(6): 2276–2286

    Article  CAS  Google Scholar 

  13. Moingt M, Bressac M, Bélanger D, Amyot M, Role of ultra-violet radiation, mercury and copper on the stability of dissolved glutathione in natural and artificial freshwater and saltwater. Chemosphere, 2010, 80(11): 1314–1320

    Article  CAS  Google Scholar 

  14. Liu J, Yang T, Chen Q, Liu F, Wang B, Distribution and potential ecological risk of heavy metals in the typical eco-units of Haihe River Basin. Frontiers of Environmental Science & Engineering, 2016, 10(1): 103–113

    Article  CAS  Google Scholar 

  15. Pérez-Donoso J M, Monrás J P, Bravo D, Aguirre A, Quest A F, Osorio-Román I O, Aroca R F, Chasteen T G, Vásquez C C. Biomimetic, mild chemical synthesis of CdTe-GSH quantum dots with improved biocompatibility. PLoS One, 2012, 7(1): e30741

    Article  Google Scholar 

  16. Shi Y, Ma Z, Cui N, Liu Y, Hou X, Du W, Liu L, Gangsheng T. In situ preparation of fluorescent CdTe quantum dots with small thiols and hyperbranched polymers as co-stabilizers. Nanoscale Research Letters, 2014, 9(1): 121

    Article  Google Scholar 

  17. Xue S, Zhao Q, Wei L, Hui X, Ma X, Lin Y. Fluorescence spectroscopic studies of the effect of granular activated carbon adsorption on structural properties of dissolved organic matter fractions. Frontiers of Environmental Science & Engineering, 2012, 6(6): 784–796

    Article  CAS  Google Scholar 

  18. Williams A T R, Winfield S A, Miller J N. Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst, 1983, 108(1290): 1067–1071

    Article  CAS  Google Scholar 

  19. Delley B. Fast calculation of electrostatics in crystals and large molecules. Journal of Physical Chemistry, 1996, 100(15): 6107–6110

    Article  CAS  Google Scholar 

  20. Delley B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764

    Article  CAS  Google Scholar 

  21. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77 (18): 3865–3868

    Article  CAS  Google Scholar 

  22. Klamt A, Jonas V, Bürger T, Lohrenz J C W. Refinement and parametrization of COSMO-RS. Journal of Physical Chemistry A, 1998, 102(26): 5074–5085

    Article  CAS  Google Scholar 

  23. Klamt A, Schuurmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry, 1993, 2(5): 799–805

    Article  Google Scholar 

  24. Cui Y H, Li L L, Zhou N Q, Liu J H, Huang Q, Wang H J, Tian J, Yu H Q. In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzyme and Microbial Technology, 2016, 95: 185–191

    Article  CAS  Google Scholar 

  25. Ganther H E. Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. Biochemistry, 1971, 10(22): 4089–4098

    Article  CAS  Google Scholar 

  26. Guo X T, Ni Z J, Liao C Y, Nan H Y, Zhang Y, Zhao W W, Wang W H. Fluorescence quenching of CdSe QDs on graphene. Applied Physics Letters, 2013, 103(20): 201909

    Article  Google Scholar 

  27. Neto E S F, da Silva S W, Morais P C, Vasilevskiy M I, Pereira-da-Silva M A, Dantas N O. Resonant raman scattering in CdSxSe1-x nanocrystals: effects of phonon confinement, composition, and elastic strain. Journal of Raman Spectroscopy: JRS, 2011, 42(8): 1660–1669

    Article  Google Scholar 

  28. Qian H, Qiu X, Li L, Ren J. Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots. Journal of Physical Chemistry B, 2006, 110(18): 9034–9040

    Article  CAS  Google Scholar 

  29. Zhang Y H, Zhang H S, Ma M, Guo X F, Wang H. The influence of ligands on the preparation and optical properties of water-soluble CdTe QDs. Applied Surface Science, 2009, 255(9): 4747–4753

    Article  CAS  Google Scholar 

  30. Mir I A, Das K, Rawat K, Bohidar H B. Hot injection versus room temperature synthesis of CdSe QDs: a differential spectroscopic and bioanalyte sensing efficacy evaluation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2016, 494: 162–169

    Article  CAS  Google Scholar 

  31. Silva F O, Carvalho M S, Mendonça R, Macedo W A A, Balzuweit K, Reiss P, Schiavon M A. Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots. Nanoscale Research Letters, 2012, 7(1): 536–538

    Article  Google Scholar 

  32. Borovaya M N, Naumenko A P, Matvieieva N A, Blume Y B, Yemets A I. Biosynthesis of luminescent CdS QDs using plant hairy root culture. Nanoscale Research Letters, 2014, 9(1): 686

    Article  Google Scholar 

  33. Gonçalves H, Mendonça C, Esteves da Silva J C. PARAFAC analysis of the quenching of EEM of fluorescence of glutathione capped CdTe quantum dots by Pb(II). Journal of Fluorescence, 2009, 19(1): 141–149

    Article  Google Scholar 

  34. Santos CI L, Carvalho M S, Raphael E, Dantas C, Ferrari J L, Schiavon M A. Synthesis, optical characterization, and size distribution determination by curve resolution methods of watersoluble CdSe QDs. Materials Research, 2016, 19(6): 1407–1416

    Article  Google Scholar 

  35. Gennari F, Sharma V K, Pettine M, Campanella L, Millero F J. Reduction of selenite by cysteine in ionic media. Geochimica et Cosmochimica Acta, 2014, 124: 98–108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 21590812), and the Collaborative Innovation Center of Suzhou Nano Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Qing Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LL., Cui, YH., Chen, JJ. et al. Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots. Front. Environ. Sci. Eng. 11, 7 (2017). https://doi.org/10.1007/s11783-017-0948-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0948-0

Keywords

Navigation