Skip to main content
Log in

Development and characterization of an anaerobic microcosm for reductive dechlorination of PCBs

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The toxic and recalcitrant polychlorinated biphenyls (PCBs) adversely affect human and biota by bioaccumulation and biomagnification through food chain. In this study, an anaerobic microcosm was developed to extensively dechlorinate hexa- and hepta-CBs in Aroclor 1260. After 4 months of incubation in defined mineral salts medium amended PCBs (70 mmol·L–1) and lactate (10 mmol·L–1), the culture dechlorinated hexa-CBs from 40.2% to 8.7% and hepta-CBs 33.6% to 11.6%, with dechlorination efficiencies of 78.3% and 65.5%, respectively (all in moL ratio). This dechlorination process led to tetra-CBs (46.4%) as the predominant dechlorination products, followed by penta-(22.1%) and tri-CBs (5.4%). The number of meta chlorines per biphenyl decreased from 2.50 to 1.41. Results of quantitative real-time PCR show that Dehalococcoides cells increased from 2.39 ×105±0.5 × 105 to 4.99 × 107±0.32 × 107 copies mL–1 after 120 days of incubation, suggesting that Dehalococcoides play a major role in reductive dechlorination of PCBs. This study could prove the feasibility of anaerobic reductive culture enrichment for the dehalogenation of highly chlorinated PCBs, which is prior to be applied for in situ bioremediation of notorious halogenated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.S. Department of Health and Human Services-ATSDR. Toxicological Profile for Polychlorinated Biphenyls (PCBs). 2000. Available online at http://www.atsdr.cdc.gov/toxprofiles/tp17.pdf. (accessed Nov 26, 2016)

    Google Scholar 

  2. Passatore L, Rossetti S, Juwarkar A A, Massacci A. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. Journal of Hazardous Materials, 2014, 278: 189–202

    Article  CAS  Google Scholar 

  3. Bedard D L, Bunnell S C, Smullen L A. Stimulation of microbial para-dechlorination of polychlorinated biphenyls that have persisted in Housatonic River sediment for decades. Environmental Science & Technology, 1996, 30(2): 687–694

    Article  CAS  Google Scholar 

  4. Yan T, La Para T M, Novak P J. The effect of varying levels of sodium bicarbonate on polychlorinated biphenyl dechlorination in Hudson River sediment cultures. Environmental Microbiology, 2006, 8(7): 1288–1298

    Article  CAS  Google Scholar 

  5. Wu Q, Sowers K R, May H D. Establishment of a polychlorinated biphenyl-dechlorinating microbial consortium, specific for doubly flanked chlorines, in a defined, sediment-free medium. Applied and Environmental Microbiology, 2000, 66(1): 49–53

    Article  CAS  Google Scholar 

  6. Wang S, He J. Dechlorination of commercial PCBs and other multiple halogenated compounds by a sediment-free culture containing Dehalococcoides and Dehalobacter. Environmental Science & Technology, 2013, 47(18): 10526–10534

    CAS  Google Scholar 

  7. Bedard D L. A case study for microbial biodegradation: anaerobic bacterial reductive dechlorination of polychlorinated biphenylsfrom sediment to defined medium. Annual Review of Microbiology, 2008, 62(1): 253–270

    Article  CAS  Google Scholar 

  8. Fennell D E, Nijenhuis I, Wilson S F, Zinder S H, Häggblom M M. Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environmental Science & Technology, 2004, 38(7): 2075–2081

    Article  CAS  Google Scholar 

  9. Adrian L, Dudková V, Demnerová K, Bedard D L. “Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Applied and Environmental Microbiology, 2009, 75(13): 4516–4524

    Article  CAS  Google Scholar 

  10. Adrian L, Hansen S K, Fung J M, Görisch H, Zinder S H. Growth of Dehalococcoides strains with chlorophenols as electron acceptors. Environmental Science & Technology, 2007, 41(7): 2318–2323

    Article  CAS  Google Scholar 

  11. Fricker A D, La Roe S L, Shea M E, Bedard D L. Dehalococcoides mccartyi strain JNA dechlorinates multiple chlorinated phenols including pentachlorophenol and harbors at least 19 reductive dehalogenase homoLogous genes. Environmental Science & Technology, 2014, 48(24): 14300–14308

    Article  CAS  Google Scholar 

  12. Wiegel J, Wu Q. Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiology Ecology, 2000, 32(1): 1–15

    Article  CAS  Google Scholar 

  13. Bedard D L, Bailey J J, Reiss B L, Jerzak G V. Development and characterization of stable sediment-free anaerobic bacterial enrichment cultures that dechlorinate aroclor 1260. Applied and Environmental Microbiology, 2006, 72(4): 2460–2470

    Article  CAS  Google Scholar 

  14. Cutter L A, Watts J E M, Sowers K R, May H D. Identification of a microorganism that links its growth to the reductive dechlorination of 2, 3, 5, 6-chlorobiphenyl. Environmental Microbiology, 2001, 3 (11): 699–709

    Article  CAS  Google Scholar 

  15. He J, Robrock K R, Alvarez-Cohen L. Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Environmental Science & Technology, 2006, 40(14): 4429–4434

    Article  CAS  Google Scholar 

  16. He J, Ritalahti K M, Yang K L, Koenigsberg S S, Löffler F E. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 2003, 424(6944): 62–65

    Article  CAS  Google Scholar 

  17. Wang S, He J. Phylogenetically distinct bacteria involve extensive dechlorination of aroclor 1260 in sediment-free cultures. PLoS One, 2013, 8(3): e59178

    Article  CAS  Google Scholar 

  18. Chu S, Hong C S. Retention indexes for temperature-programmed gas chromatography of polychlorinated biphenyls. Analytical Chemistry, 2004, 76(18): 5486–5497

    Article  CAS  Google Scholar 

  19. Hendrickson E R, Payne J A, Young R M, Starr M G, Perry M P, Fahnestock S, Ellis D E, Ebersole R C. MoLecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Applied and Environmental Microbiology, 2002, 68(2): 485–495

    Article  CAS  Google Scholar 

  20. Löffler F E, Sun Q, Li J, Tiedje J M. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Applied and Environmental Microbiology, 2000, 66(4): 1369–1374

    Article  Google Scholar 

  21. Schlötelburg C, Wintzingerode C, Hauck R, Wintzingerode F, Hegemann W, Göbel U B. Microbial structure of an anaerobic bioreactor population that continuously dechlorinates 1, 2-dichloropropane. FEMS Microbiology Ecology, 2002, 39(3): 229–237

    Article  Google Scholar 

  22. el Fantroussi S, Mahillon J, Naveau H, Agathos S N. Introduction of anaerobic dechlorinating bacteria into soil slurry microcosms and nested-PCR monitoring. Applied and Environmental Microbiology, 1997, 63(2): 806–811

    Google Scholar 

  23. Sung Y, Fletcher K E, Ritalahti K M, Apkarian R P, Ramos-Hernández N, Sanford R A, Mesbah N M, Löffler F E. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Applied and Environmental Microbiology, 2006, 72(4): 2775–2782

    Article  CAS  Google Scholar 

  24. Watts J E M, Fagervold S K, May H D, Sowers K R. A PCR-based specific assay reveals a population of bacteria within the Chloroflexi associated with the reductive dehalogenation of polychlorinated biphenyls. Microbiology, 2005, 151(6): 2039–2046

    Article  CAS  Google Scholar 

  25. Fagervold S K, Watts J E M, May H D, Sowers K R. Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different Chloroflexi phylotypes. Applied and Environmental Microbiology, 2005, 71 (12): 8085–8090

    Article  CAS  Google Scholar 

  26. Bedard D L, Ritalahti K M, Löffler F E. The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Applied and Environmental Microbiology, 2007, 73(8): 2513–2521

    Article  CAS  Google Scholar 

  27. Wang S, He J. Two-step denaturing gradient gel electrophoresis (2SDGGE), a gel-based strategy to capture full-length 16S rRNA gene sequences. Applied Microbiology and Biotechnology, 2012, 95(5): 1305–1312

    Article  CAS  Google Scholar 

  28. Cheng D, He J. Isolation and characterization of “Dehalococcoides” sp. strain MB, which dechlorinates tetrachloroethene to trans-1, 2-dichloroethene. Applied and Environmental Microbiology, 2009, 75 (18): 5910–5918

    Article  CAS  Google Scholar 

  29. Bedard D L, May R J. Characterization of the polychlorinated biphenyls in the sediments of Woods Pond: evidence for microbial dechlorination of Aroclor 1260 in situ. Environmental Science & Technology, 1996, 30(1): 237–245

    Article  CAS  Google Scholar 

  30. Fagervold S K, May H D, Sowers K R. Microbial reductive dechlorination of aroclor 1260 in Baltimore harbor sediment microcosms is catalyzed by three phylotypes within the phylum Chloroflexi. Applied and Environmental Microbiology, 2007, 73(9): 3009–3018

    Article  CAS  Google Scholar 

  31. Bedard D L, Pohl E A, Bailey J J, Murphy A. Characterization of the PCB substrate range of microbial dechlorination process LP. Environmental Science & Technology, 2005, 39(17): 6831–6838

    Article  CAS  Google Scholar 

  32. Berkaw M, Sowers K R, May H D. Anaerobic ortho dechlorination of polychlorinated biphenyls by estuarine sediments from Baltimore Harbor. Applied and Environmental Microbiology, 1996, 62(7): 2534–2539

    CAS  Google Scholar 

  33. Van Dort H M, Bedard D L. Reductive ortho and meta dechlorination of a polychlorinated biphenyl congener by anaerobic microorganisms. Applied and Environmental Microbiology, 1991, 57(5): 1576–1578

    Google Scholar 

  34. Williams W A. Microbial reductive dechlorination of trichlorobiphenyls in anaerobic sediment slurries. Environmental Science & Technology, 1994, 28(4): 630–635

    Article  CAS  Google Scholar 

  35. Ahsanul Islam M, Edwards E A, Mahadevan R. Characterizing the metabolism of Dehalococcoides with a constraint-based model. PLoS Computational Biology, 2010, 6(8): e1000887

    Article  Google Scholar 

  36. Hug L A, Beiko R G, Rowe A R, Richardson R E, Edwards E A. Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community. BMC Genomics, 2012, 13(1): 327

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by grants from the National Natural Science Foundation of China (Grant Nos. 51108014 and 41671310). References

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, D., Wang, S. Development and characterization of an anaerobic microcosm for reductive dechlorination of PCBs. Front. Environ. Sci. Eng. 11, 2 (2017). https://doi.org/10.1007/s11783-017-0939-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0939-1

Keywords

Navigation