Skip to main content
Log in

Process stability and microbial community composition in pig manure and food waste anaerobic co-digesters operated at low HRTs

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

This study assessed the effects of reducing hydraulic retention times (HRTs) from 21 days to 10.5 days when anaerobically co-digesting pig manure and food waste. Continuously stirred tank reactors of 3.75 L working volume were operated in triplicate at 42°C. Digester HRT was progressively decreased from 21 to 15 days to 10.5 days, with an associated increase in organic loading rate (OLR) from 3.1 kg volatile solids (VS)·m–3·day–1 to 5.1 kg VS·m–3·day–1 to 7.25 kg VS·m–3·day–1. Reducing HRT from 21 days to 15 days caused a decrease in specific methane yields and VS removal rates. Operation at a HRT of 10.5 days initially resulted in the accumulation of isobutyric acid in each reactor. High throughput 16S rRNA gene sequencing revealed that this increase coincided with a shift in acidogenic bacterial populations, which most likely resulted in the increased isobutyric acid concentrations. This may in turn have caused the increase in relative abundance of Clocamonaceae bacteria, which syntrophically degrade non-acetate volatile fatty acids (VFAs) into H2 and CO2. This, along with the increase in abundance of other syntrophic VFA oxidizers, such as Spiorchatetes, suggests that VFA oxidation plays a role in digester operation at low HRTs. Reducing the HRT to below 21 days compromised the ability of the anaerobic digestion system to reduce enteric indicator organism counts below regulatory limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie S, Wu G, Lawlor P G, Frost J P, Zhan X. Methane production from anaerobic co-digestion of the separated solid fraction of pig manure with dried grass silage. Bioresource Technology, 2012, 104: 289–297

    Article  CAS  Google Scholar 

  2. Sundberg C, Al-Soud W A, Larsson M, Alm E, Yekta S S, Svensson B H, Sørensen S J, Karlsson A. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiology Ecology, 2013, 85(3): 612–626

    Article  CAS  Google Scholar 

  3. Dennehy C, Lawlor P G, Croize T, Jiang Y, Morrison L, Gardiner G E, Zhan X. Synergism and effect of high initial volatile fatty acid concentrations during food waste and pig manure anaerobic codigestion. Waste Management (New York, N.Y.), 2016, 56: 173–180

    Article  CAS  Google Scholar 

  4. Batstone D, Tait S, Starrenburg D. Estimation of hydrolysis parameters in full-scale anerobic digesters. Biotechnology and Bioengineering, 2009, 102(5): 1513–1520

    Article  CAS  Google Scholar 

  5. Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Puhler A, Schluter A. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnology for Biofuels, 2015, 8(1): 14–20

    Article  Google Scholar 

  6. Alsouleman K, Linke B, Klang J, Klocke M, Krakat N, Theuerl S. Reorganisation of a mesophilic biogas microbiome as response to a stepwise increase of ammonium nitrogen induced by poultry manure supply. Bioresource Technology, 2016, 208: 200–204

    Article  CAS  Google Scholar 

  7. Lebuhn M, Hanreich A, Klocke M, Schlüter A, Bauer C, Pérez C M. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe, 2014, 29: 10–21

    Article  CAS  Google Scholar 

  8. De Vrieze J, Saunders A M, He Y, Fang J, Nielsen P H, Verstraete W, Boon N. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Research, 2015, 75: 312–323

    Article  Google Scholar 

  9. De Vrieze J, Raport L, Roume H, Vilchez-Vargas R, Jáuregui R, Pieper D H, Boon N. The full-scale anaerobic digestion microbiome is represented by specific marker populations. Water Research, 2016, 104: 101–110

    Article  Google Scholar 

  10. McCutcheon G. A study of the dry matter and nutrient content of pig slurry. Dissertation for Master Degree. Dublin, Ireland: University College Dublin, 1997

    Google Scholar 

  11. Browne J D, Allen E, Murphy J D. Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation. Applied Energy, 2014, 128: 307–314

    Article  CAS  Google Scholar 

  12. Anthonisen A, Loehr R, Prakasam T, Srinath E. Inhibition of nitrification by ammonia and nitrous acid. Journal-Water Pollution Control Federation, 1976, 48(5): 835–852

    CAS  Google Scholar 

  13. APHA. Standard Methods for the Examination of Water and Wastewater. Washington D. C.: APHA-AWWA-WEF, 1998

    Google Scholar 

  14. Batstone D J, Rodríguez J. Modelling Anaerobic Digestion Processes. In; Fang H P, Zhang T, eds. Anaerobic Biotechnology: Environmental Protection and Resource Recovery. London: Imperial College Press, 2015, 133–160

    Chapter  Google Scholar 

  15. International Organization of Standardization. Microbiology of Food and Animal Feeding Stuffs-Horizontal Method for the Detection of Salmonella spp. Amendment 1: Annex D: Detection of Salmonella spp. in Animal Faeces and in Environmental Samples from the Primary Production Stage. Geneva, Switzerland: International Organization for Standardization, 2007

    Google Scholar 

  16. Caporaso J G, Lauber C L, Walters W A, Berg-Lyons D, Huntley J, Fierer N, Owens S M, Betley J, Fraser L, Bauer M, Gormley N, Gilbert J A, Smith G, Knight R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal, 2012, 6(8): 1621–1624

    Article  CAS  Google Scholar 

  17. De Santis T Z, Hugenholtz P, Larsen N, Rojas M, Brodie E L, Keller K, Huber T, Dalevi D, Hu P, Andersen G L. Greengenes, a chimerachecked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 2006, 72(7): 5069–5072

    Article  Google Scholar 

  18. Fouhy F, Guinane C M, Hussey S, Wall R, Ryan C A, Dempsey E M, Murphy B, Ross R P, Fitzgerald G F, Stanton C, Cotter P D. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrobial Agents and Chemotherapy, 2012, 56(11): 5811–5820

    Article  CAS  Google Scholar 

  19. Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience, 2013, 2(1): 16–22 doi:10.1186/2047-217X-2-16

    Article  Google Scholar 

  20. Noike T, Endo G, Chang J E, Yaguchi J I, Matsumoto J I. Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnology and Bioengineering, 1985, 27(10): 1482–1489

    Article  CAS  Google Scholar 

  21. Franke-Whittle I H, Walter A, Ebner C, Insam H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Management (New York, N.Y.), 2014, 34(11): 2080–2089

    Article  CAS  Google Scholar 

  22. Maspolim Y, Zhou Y, Guo C, Xiao K, Ng W J. Comparison of single-stage and two-phase anaerobic sludge digestion systems–Performance and microbial community dynamics. Chemosphere, 2015, 140: 54–62

    Article  CAS  Google Scholar 

  23. De Vrieze J, Gildemyn S, Vilchez-Vargas R, Jauregui R, Pieper D H, Verstraete W, Boon N. Inoculum selection is crucial to ensure operational stability in anaerobic digestion. Applied Microbiology and Biotechnology, 2015, 99(1): 189–199

    Article  Google Scholar 

  24. Yamada T, Sekiguchi Y. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi “Subphylum I” with natural and biotechnological relevance. Microbes and Environments, 2009, 24(3): 205–216

    Article  Google Scholar 

  25. Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME Journal, 2009, 3(6): 700–714

    Article  Google Scholar 

  26. Ganidi N, Tyrrel S, Cartmell E. Anaerobic digestion foaming causes–A review. Bioresource Technology, 2009, 100(23): 5546–5554

    Article  CAS  Google Scholar 

  27. Holdeman L V, Moore W E C. New genus, coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. International Journal of Systematic and Evolutionary Microbiology, 1974, 24(2): 260–277

    Google Scholar 

  28. Qiu Y L, Kuang X Z, Shi X S, Yuan X Z, Guo R B. Paludibacter jiangxiensis sp. nov., a strictly anaerobic, propionate-producing bacterium isolated from rice paddy field. Archives of Microbiology, 2014, 196(3): 149–155

    Article  CAS  Google Scholar 

  29. Wu W M, Jain M K, Hickey R F, Zeikus J G. Perturbation of syntrophic isobutyrate and butyrate degradation with formate and hydrogen. Biotechnology and Bioengineering, 1996, 52(3): 404–411

    Article  CAS  Google Scholar 

  30. Wu W M, Jain M K, Zeikus J G. Anaerobic degradation of normaland branched-chain fatty acids with four or more carbons to methane by a syntrophic methanogenic triculture. Applied and Environmental Microbiology, 1994, 60(7): 2220–2226

    CAS  Google Scholar 

  31. Hagen L H, Vivekanand V, Linjordet R, Pope P B, Eijsink V G H, Horn S J. Microbial community structure and dynamics during codigestion of whey permeate and cow manure in continuous stirred tank reactor systems. Bioresource Technology, 2014, 171: 350–359

    Article  CAS  Google Scholar 

  32. Lee S H, Park J H, Kang H J, Lee Y H, Lee T J, Park H D. Distribution and abundance of Spirochaetes in full-scale anaerobic digesters. Bioresource Technology, 2013, 145: 25–32

    Article  CAS  Google Scholar 

  33. Sun L, Müller B, Westerholm M, Schnürer A. Syntrophic acetate oxidation in industrial CSTR biogas digesters. Journal of Biotechnology, 2014, 171: 39–44

    Article  CAS  Google Scholar 

  34. Sahlström L. A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresource Technology, 2003, 87(2): 161–166

    Article  Google Scholar 

  35. Chen Y, Fu B, Wang Y, Jiang Q, Liu H. Reactor performance and bacterial pathogen removal in response to sludge retention time in a mesophilic anaerobic digester treating sewage sludge. Bioresource Technology, 2012, 106: 20–26

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the Green Farm project supported by a Science Foundation Ireland Investigator Project Award (Ref: 12/IP/1519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinmin Zhan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dennehy, C., Lawlor, P.G., Gardiner, G.E. et al. Process stability and microbial community composition in pig manure and food waste anaerobic co-digesters operated at low HRTs. Front. Environ. Sci. Eng. 11, 4 (2017). https://doi.org/10.1007/s11783-017-0923-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0923-9

Keywords

Navigation