Skip to main content
Log in

Applications of hollow nanomaterials in environmental remediation and monitoring: A review

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Hollow nanomaterials have attracted significant attention because of their high chemical and thermal stability, high specific surface area, high porosity, low density, and good biocompatibility. These state-of-the-art nanomaterials have been shown to efficiently adsorb heavy metals, and volatile hazardous substances, photodegrade persistent organic pollutants, and other compounds, and inactivate bacteria. Such properties have enabled the use of these materials for environmental remediation, such as in water/wastewater treatment, soil remediation, air purification, and substance monitoring, etc. Hollow nanomaterials showed higher photocatalytic activity than those without hollow structure owing to their high active surface area, reduced diffusion resistance, and improved accessibility. And, the Doping method could improve the photocatalytic performance of hollow nanomaterials further under visible light. Moreover, the synthetic mechanisms and methods of these materials are important because their size and morphology help to determine their precise properties. This article reviews the environmental applications and potential risks of these materials, in addition to their syntheses. Finally, an outlook into the development of these materials is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu C. Controllable preparation of inorganic hollow nanospheres and their applications in environmental protection. Dissertation for the Doctor Degree. Zhenjiang: Jiangsu University, 2012 (in Chinese)

    Google Scholar 

  2. Kaur R, Hasan A, Iqbal N, Alam S, SainiMK, Raza S K. Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: a review. Journal of Separation Science, 2014, 37(14): 1805–1825

    Article  CAS  Google Scholar 

  3. Zhang W X. Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research, 2003, 5(3–4): 323–332

    Article  CAS  Google Scholar 

  4. Buzea C, Pacheco I I, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2007, 2(4): MR17–MR71

    Article  Google Scholar 

  5. Aldinger F. Controlled porosity by an extreme Kirkendall effect. Acta Metallurgica, 1974, 22(7): 923–928

    Article  CAS  Google Scholar 

  6. Caruso R A, Antonietti M. Sol-gel nanocoating: an approach to the preparation of structured materials. Chemistry of Materials, 2001, 13(10): 3272–3282

    Article  CAS  Google Scholar 

  7. Zheng J, Wu B H, Jiang Z Y, Kuang Q, Fang X L, Xie Z X, Huang R B, Zheng L S. General and facile syntheses of metal silicate porous hollow nanostructures. Chemistry, an Asian Journal, 2010, 5(6): 1439–1444

    CAS  Google Scholar 

  8. Liu R M, Yin J Z, Du WD, Gao F, Fan Y Z, Lu Q Y. Monodisperse CuO Hard and Hollow Nanospheres as Visible-Light Photocatalysts. European Journal of Inorganic Chemistry, 2013, 2013(8): 1358–1362

    Article  CAS  Google Scholar 

  9. Zhan S, Chen D, Jiao X, Song Y. Mesoporous TiO2/SiO2 composite nanofibers with selective photocatalytic properties. Chemical Communications, 2007, (20): 2043–2045

    Article  Google Scholar 

  10. Yu X Y, Yu L, Shen L F, Song X H, Chen H Y, Lou X W D. General formation of MS (M = Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties. Advanced Functional Materials, 2014, 24(47): 7440–7446

    Article  CAS  Google Scholar 

  11. Zhang F, Zhu D, Chen X, Xu X, Yang Z, Zou C, Yang K, Huang S M. A nickel hydroxide-coated 3D porous graphene hollow sphere framework as a high performance electrode material for supercapacitors. Physical Chemistry Chemical Physics, 2014, 16(9): 4186–4192

    Article  CAS  Google Scholar 

  12. Wang J, Yan Y, Hojamberdiev M, Ruan X, Cai A, Xu Y. A facile synthesis of luminescent YVO4: Eu3+ hollow microspheres in virtue of template function of the SDS–PEG soft clusters. Solid State Sciences, 2012, 14(8): 1018–1022

    Article  CAS  Google Scholar 

  13. Shah S N, Shah S S, Ito E, Heddle J G. Template-free, hollow and porous platinum nanotubes derived from tobamovirus and their three-dimensional structure at the nanoscale. RSC Advances, 2014, 4(74): 39305–39311

    Article  CAS  Google Scholar 

  14. Colder A, Huisken F, Trave E, Ledoux G, Guillois O, Reynaud C, Hofmeister H, Pippel E. Strong visible photoluminescence from hollow silica nanoparticles. Nanotechnology, 2004, 15(3): L1–L4

    Article  CAS  Google Scholar 

  15. Kolmakov A. The effect of morphology and surface doping on sensitization of quasi-1D metal oxide nanowire gas sensors. Proc SPIE 2006, 6370: 63700X1–X8

    Article  Google Scholar 

  16. Wang J, Qiu T, Chen X, Lu Y L, Yang W S. Hierarchical hollow urchin-like NiCo2O4 nanomaterial as electrocatalyst for oxygen evolution reaction in alkaline medium. Journal of Power Sources, 2014, 268(5): 341–348

    Article  CAS  Google Scholar 

  17. Han J, Dai J, Guo R. Highly efficient adsorbents of poly (ophenylenediamine) solid and hollow sub-microspheres towards lead ions: a comparative study. Journal of Colloid and Interface Science, 2011, 356(2): 749–756

    Article  CAS  Google Scholar 

  18. Sun W, Chen M, Zhou S, Wu L. Synthesis of hierarchically nanostructured TiO2 spheres with tunable morphologies based on a novel amphiphilic polymer precursor and their use for heavy metal ion sequestration. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(34): 14004–14013

    Article  CAS  Google Scholar 

  19. Zhuang Y, Yang Y, Xiang G, Wang X. Magnesium silicate hollow nanostructures as highly efficient absorbents for toxic metal ions. Journal of Physical Chemistry C, 2009, 113(24): 10441–10445

    Article  CAS  Google Scholar 

  20. Cheng X L, Jiang J S, Hu M, Mao G Y, Liu Z W, Zeng Y, Zhang Q H. Liquid–liquid interface-assisted solvothermal synthesis of durian-like a-Fe2O3 hollow spheres constructed by nano-polyhedrons. CrystEngComm, 2012, 14(9): 3056–3062

    Article  CAS  Google Scholar 

  21. Wang X, Liu J, Xu W. One-step hydrothermal preparation of amino-functionalized carbon spheres at low temperature and their enhanced adsorption performance towards Cr (VI) for water purification. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2012, 415: 288–294

    Article  CAS  Google Scholar 

  22. Yao T, Cui T, Wu J, Chen Q, Lu S, Sun K. Preparation of hierarchical porous polypyrrole nanoclusters and their application for removal of Cr (VI) ions in aqueous solution. Polymer Chemistry, 2011, 2(12): 2893–2899

    Article  CAS  Google Scholar 

  23. El-Toni A M, Habila M A, Ibrahim M A, Labis J P, ALOthman Z A. Simple and facile synthesis of amino functionalized hollow core–mesoporous shell silica spheres using anionic surfactant for Pb (II), Cd (II), and Zn (II) adsorption and recovery. Chemical Engineering Journal, 2014, 251: 441–451

    Article  CAS  Google Scholar 

  24. Rostamian R, Najafi M, Rafati A A. Synthesis and characterization of thiol-functionalized silica nano hollow sphere as a novel adsorbent for removal of poisonous heavy metal ions from water: kinetics, isotherms and error analysis. Chemical Engineering Journal, 2011, 171(3): 1004–1011

    Article  CAS  Google Scholar 

  25. Cheng K, Zhou Y M, Sun Z Y, Hu H B, Zhong H, Kong X K, Chen Q W. Synthesis of carbon-coated, porous and water-dispersive Fe3O4 nanocapsules and their excellent performance for heavy metal removal applications. Dalton Transactions (Cambridge, England), 2012, 41(19): 5854–5861

    Article  CAS  Google Scholar 

  26. Liu M, Wen T, Wu X, Chen C, Hu J, Li J, Wang X. Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(VI) removal. Dalton Transactions (Cambridge, England), 2013, 42(41): 14710–14717

    Article  CAS  Google Scholar 

  27. Najafi M, Yousefi Y, Rafati A A. Synthesis, characterization and adsorption studies of several heavy metal ions on aminofunctionalized silica nano hollow sphere and silica gel. Separation and Purification Technology, 2012, 85: 193–205

    Article  CAS  Google Scholar 

  28. Wang X, Cai W, Liu S, Wang G, Wu Z, Zhao H. ZnO hollow microspheres with exposed porous nanosheets surface: structurally enhanced adsorption towards heavy metal ions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2013, 422: 199–205

    Article  CAS  Google Scholar 

  29. Liu C, Yin H B, Shi L P, Wang A L, Wu Z A, Wu G, Jiang T, Shen Y T, Jiang Y S. Adsorbability characteristic of hollow SiO2 nanospheres for heavy metal ions. Zhongguo Youse Jinshu Xuebao, 2013, 23(6): 1661–1665 (in Chinese)

    CAS  Google Scholar 

  30. Wang P, Du M, Zhu H, Bao S, Yang T, Zou M. Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism. Journal of Hazardous Materials, 2015, 286: 533–544

    Article  CAS  Google Scholar 

  31. Liu G, Deng Q, Wang H M, Kang S H, Yang Y, Ng D H L, Cai W P, Wang G. Z. Synthesis and characterization of nanostructured Fe3O4 micron-spheres and their application in removing toxic Cr ions from polluted water 2012, 18(42): 13418–13426

    CAS  Google Scholar 

  32. Colón G, Hidalgo M C, Navío J A. Photocatalytic deactivation of commercial TiO2 samples during simultaneous photoreduction of Cr(VI) and photooxidation of salicylic acid. Journal of Photochemistry and Photobiology A Chemistry, 2001, 138(1): 79–85

    Article  Google Scholar 

  33. Bhatkhande D S, Pangarkar V G, Beenackers A A C M. Photacatalytic degradation for environmental applicatons-a review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2002, 77(1): 102–116

    Article  CAS  Google Scholar 

  34. Huang J Y, Liu G H, Zhang W H, Huang J, Lin T, Wang Y J. Progress on photocatalytic reduction of heavy metal ions in wastewater. Environmental Science & Technology, 2008, 31(12): 104–108(in Chinese)

    CAS  Google Scholar 

  35. Li H Y, Wu T S, Cai B, MaWG, Sun Y J, Gan S Y, Han D X, Niu L. Efficiently photocatalytic reduction of carcinogenic contaminant Cr(VI) upon robust AgCl:Ag hollow nanocrystals. Applied Catalysis B: Environmental, 2015, 164: 344–351

    Article  CAS  Google Scholar 

  36. Yang Y, Wang G, Deng Q, Wang H, Zhang Y, Ng D H, Zhao H. Enhanced photocatalytic activity of hierarchical structure TiO2 hollow spheres with reactive (001) facets for the removal of toxic heavy metal Cr(VI). RSC Advances, 2014, 4(65): 34577–34583

    Article  CAS  Google Scholar 

  37. Tripathi P K, Gan L, Liu M, Ma X M, Zhao Y H, Zhu D Z, Xu Z J, Chen L W, Rao N N. One-pot assembly of silica@ two polymeric shells for synthesis of hollow carbon porous nanospheres: adsorption of bisphenol A. Materials Letters, 2014, 120: 108–110

    Article  CAS  Google Scholar 

  38. Ye L, Guan W, Lu C, Zhao H, Lu X. Fabrication of hollow ZnO hexahedral nanocrystals grown on Si (100) substrate by a facile route. Materials Letters, 2014, 118: 115–118

    Article  CAS  Google Scholar 

  39. Liu J, Zhang G K, Yu J C, Guo Y D. In situ synthesis of Zn2GeO4 hollow spheres and their enhanced photocatalytic activity for the degradation of antibiotic metronidazole. Dalton Transactions (Cambridge, England), 2013, 42(14): 5092–5099

    Article  CAS  Google Scholar 

  40. Kroto H W, Heath J R, O’ Brien S C, Curl R F, Smalley R E. C60: Buckminsterfullerene. Nature, 1985, 318(6042): 162–163

    Article  CAS  Google Scholar 

  41. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58

    Article  CAS  Google Scholar 

  42. Ong Y T, Ahmad A L, Zein S H S, Tan S H. A review on carbon nanotubes in an environmental protection and green engineering perspective. Brazilian Journal of Chemical Engineering, 2010, 27 (2): 227–242

    CAS  Google Scholar 

  43. Su F, Lu C, Hu S. Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2010, 353 (1): 83–91

    Article  CAS  Google Scholar 

  44. Lu C, Chung Y L, Chang K F. Adsorption of trihalomethanes from water with carbon nanotubes. Water Research, 2005, 39(6): 1183–1189

    Article  CAS  Google Scholar 

  45. Chin C J M, Shih L C, Tsai H J, Liu T K. Adsorption of o-xylene and p-xylene from water by SWCNTs. Carbon, 2007, 45(6): 1254–1260

    Article  CAS  Google Scholar 

  46. Ji L L, Shao Y, Xu Z Y, Zheng S R, Zhu D Q. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching. Environmental Science & Technology, 2010, 44(16): 6429–6436

    Article  CAS  Google Scholar 

  47. Lin D H, Xing B S. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental Science & Technology, 2008, 42(19): 7254–7259

    Article  CAS  Google Scholar 

  48. Liao Q, Sun J, Gao L. The adsorption of resorcinol from water using multi-walled carbon nanotubes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 312(2–3): 160–165

    Article  CAS  Google Scholar 

  49. Yang K, Wu W, Jing Q, Zhu L. Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environmental Science & Technology, 2008, 42(21): 7931–7936

    Article  CAS  Google Scholar 

  50. Pan B, Lin D H, Mashayekhi H, Xing B S. Adsorption and hysteresis of bisphenol A and 17 alpha-ethinyl estradiol on carbon nanomaterials. Environmental Science & Technology, 2008, 42 (15): 5480–5485

    Article  Google Scholar 

  51. Yang K, Zhu L, Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environmental Science & Technology, 2006, 40(6): 1855–1861

    Article  CAS  Google Scholar 

  52. Coughlin R W, Ezra F S. Role of surface acidity in the adsorption of organic pollutants on the surface of carbon. Environmental Science & Technology, 1968, 2(4): 291–297

    Article  CAS  Google Scholar 

  53. Mattson J A, Mark H B Jr, MalbinMD,WeberWJ Jr, Crittenden J C. Surface chemistry of active carbon: specific adsorption of phenols. Journal of Colloid and Interface Science, 1969, 31(1): 116–130

    Article  CAS  Google Scholar 

  54. Chen W, Duan L, Wang L, Zhu D. Adsorption of hydroxyl-and amino-substituted aromatics to carbon nanotubes. Environmental Science & Technology, 2008, 42(18): 6862–6868

    Article  CAS  Google Scholar 

  55. Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology, 2008, 42(24): 9005–9013

    Article  CAS  Google Scholar 

  56. Gotovac S, Honda H, Hattori Y, Takahashi K, Kanoh H, Kaneko K. Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Letters, 2007, 7(3): 583–587

    Article  CAS  Google Scholar 

  57. Lin D, Xing B. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental Science & Technology, 2008, 42(19): 7254–7259

    Article  CAS  Google Scholar 

  58. Ghasemzadeh G, Momenpour M, Omidi F, Hosseini M R, Ahani M, Barzegari A. Applications of nanomaterials in water treatment and environmental remediation. Frontiers of Environmental Science and Engineering, 2014, 8(4): 1–12

    Article  Google Scholar 

  59. Zhan S H, Chen D R, Jiao X L, Tao C H. Long TiO2 hollow fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties. Journal of Physical Chemistry B, 2006, 110(23): 11199–11204

    Article  CAS  Google Scholar 

  60. Joo J B, Dahl M, Li N, Zaera F, Yin Y. Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy & Environmental Science, 2013, 6(7): 2082–2092

    Article  CAS  Google Scholar 

  61. Bard A J. Photoelectrochemistry and heterogeneous photocatalysis at semiconductors. Journal of Photochemistry, 1979, 10(1): 59–75

    Article  CAS  Google Scholar 

  62. Amalric L, Guillard C, Pichat P. Use of catalase and superoxide dismutase to assess the roles of hydrogen peroxide and superoxide in the TiO2 or ZnO photocatalytic destruction of 1, 2-dimethoxybenzene in water. Research on Chemical Intermediates, 1994, 20(6): 579–594

    Article  CAS  Google Scholar 

  63. Schwarz P F, Turro N J, Bossmann S H, Braun A M,Wahab AMA A, Dü rr H. A new method to determine the generation of hydroxyl radicals in illuminated TiO2 suspensions. Journal of Physical Chemistry B, 1997, 101(36): 7127–7134

    Article  CAS  Google Scholar 

  64. Grela M A, Coronel M E J, Colussi A J. Quantitative spin-trapping studies of weakly illuminated titanium dioxide sols. Implications for the mechanism of photocatalysis. Journal of Physical Chemistry, 1996, 100(42): 16940–16946

    Article  CAS  Google Scholar 

  65. Fukahori S, Ichiura H, Kitaoka T, Tanaka H. Photocatalytic decomposition of bisphenol A in water using composite TiO2- zeolite sheets prepared by a papermaking technique. Environmental Science & Technology, 2003, 37(5): 1048–1051

    Article  CAS  Google Scholar 

  66. Li X X, Fang S M, Ge L, Han C C, Qiu P, Liu W L. Synthesis of flower-like Ag/AgCl-Bi2MoO6 plasmonic photocatalysts with enhanced visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2015, 176–177: 162–169

    Google Scholar 

  67. Kanki T, Yoneda H, Sano N, Toyoda A, Nagai C. Photocatalytic reduction and deposition of metallic ions in aqueous phase. Chemical Engineering Journal, 2004, 97(1): 77–81

    Article  CAS  Google Scholar 

  68. Kyung H, Lee J, Choi W. Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination. Environmental Science & Technology, 2005, 39(7): 2376–2382

    Article  CAS  Google Scholar 

  69. Hsiao C Y, Lee C L, Ollis D F. Heterogeneous photocatalysis: degradation of diluted solutions of dichloromethane (CH2Cl2), chloroform (CHCl3) and carbon tetrachloride (CCl4) with illuminated TiO2 photocatalyst. Journal of Catalysis, 1983, 82(2): 418–423

    Article  CAS  Google Scholar 

  70. Syoufian A, Satriya O H, Nakashima K. Photocatalytic activity of titania hollow spheres: photodecomposition of methylene blue as a target molecule. Catalysis Communications, 2007, 8(5): 755–759

    Article  CAS  Google Scholar 

  71. Wang S X, Yang X J, Wang Y P, Liu L X, Guo Y Y, Guo H. Morphology-controlled synthesis of Ti3+ self-doped yolk–shell structure titanium oxide with superior photocatalytic activity under visible light. Journal of Solid State Chemistry, 2014, 213(5): 98–103

    Article  CAS  Google Scholar 

  72. Ao Y, Xu J, Zhang S, Fu D. A one-pot method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light. Applied Surface Science, 2010, 256(9): 2754–2758

    Article  CAS  Google Scholar 

  73. Kim H R, Choi K Y, Shul Y G. Preparation of TiO2/SiO2 hollow spheres and their activity in methylene blue photodecomposition. Korean Journal of Chemical Engineering, 2007, 24(4): 596–599

    Article  CAS  Google Scholar 

  74. Jiang Y, Guo L, Zhang W, Dai F, Yan Y, Zhang F, Lv H. Preparation of zinc tetraaminophthalocyanine sensitized TiO2 hollow nanospheres and their enhanced photocatalytic properties under visible light. Desalination and Water Treatment, 2013 (ahead-of-print): 1–8

    Google Scholar 

  75. Daghrir R, Drogui P, Robert D. Modified TiO2 for environmental photocatalytic applications: a review. Industrial & Engineering Chemistry Research, 2013, 52(10): 3581–3599

    CAS  Google Scholar 

  76. Zhang J, Wang S, Wang Y, Wang Y, Zhu B L, Xia H J, Guo X Z, Zhang S M, Huang W P, Wu S H. NO2 sensing performance of SnO2 hollow-sphere sensor. Sensors and Actuators. B, Chemical, 2009, 135(2): 610–617

    Article  CAS  Google Scholar 

  77. Ju D, Xu H, Qiu Z, Guo J, Zhang J, Cao B. Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction. Sensors and Actuators. B, Chemical, 2014, 200: 288–296

    Article  CAS  Google Scholar 

  78. Liu J, Wang X, Peng Q, Li Y. Preparation and gas sensing properties of vanadium oxide nanobelts coated with semiconductor oxides. Sensors and Actuators. B, Chemical, 2006, 115(1): 481–487

    Article  CAS  Google Scholar 

  79. Lee J H. Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sensors and Actuators. B, Chemical, 2009, 140(1): 319–336

    Article  CAS  Google Scholar 

  80. Wang H Z, Liang J B, Fan H, Xi B J, ZhangMF, Xiong S L, Zhu Y C, Qian Y T. Synthesis and gas sensitivities of SnO2 nanorods and hollow microspheres. Journal of Solid State Chemistry, 2008, 181 (1): 122–129

    Article  Google Scholar 

  81. Zhao Q R, Gao Y, Bai X, Wu C Z, Xie Y. Facile synthesis of SnO2 hollow nanospheres and applications in gas sensors and electrocatalysts. European Journal of Inorganic Chemistry, 2006, 2006(8): 1643–1648

    Article  Google Scholar 

  82. Martinez C J, Hockey B, Montgomery C B, Semancik S. Porous tin oxide nanostructured microspheres for sensor applications. Langmuir, 2005, 21(17): 7937–7944

    Article  CAS  Google Scholar 

  83. Choi W S, Koo H Y, Zhongbin Z, Li Y, Kim D Y. Templated synthesis of porous capsules with a controllable surface morphology and their application as gas sensors. Advanced Functional Materials, 2007, 17(11): 1743–1749

    Article  CAS  Google Scholar 

  84. Herzog G, Beni V. Stripping voltammetry at micro-interface arrays: A review. Analytica Chimica Acta, 2013, 769: 10–21

    Article  CAS  Google Scholar 

  85. Xu R X, Yu X Y, Gao C, Jiang Y J, Han D D, Liu J H, Huang X J. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: the use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection. Analytica Chimica Acta, 2013, 790: 31–38

    Article  CAS  Google Scholar 

  86. Cheng X, Li J, Li X, Zhang D H, Zhang H J, Zhang A Q, Huang H, Lian J S. A highly sensitive sensor based on hollow particles for the detection, adsorption and removal of Hg2+ ions. Journal of Materials Chemistry, 2012, 22(45): 24102–24108

    Article  CAS  Google Scholar 

  87. Harris H H, Pickering I J, George G N. The chemical form of mercury in fish. Science, 2003, 301(5637): 1203–1203

    Article  CAS  Google Scholar 

  88. Liu Y, Li Q, Zhang J T, SunWZ, Gao S A, Shang J K. PdO loaded TiO2 hollow sphere composite photocatalyst with a high photocatalytic disinfection efficiency on bacteria. Chemical Engineering Journal, 2014, 249: 63–71

    Article  CAS  Google Scholar 

  89. Liu S W, Huang G C, Yu J G, Ng T W, Yip H Y, Wong P K. Porous fluorinated SnO2 hollow nanospheres: transformative selfassembly and photocatalytic inactivation of bacteria. ACS Applied Materials & Interfaces, 2014, 6(4): 2407–2414

    Article  CAS  Google Scholar 

  90. Qin F, Zhao H P, Li G F, Yang H, Li J, Wang R M, Liu Y L, Hu J C, Sun H Z, Chen R. Size-tunable fabrication of multifunctional Bi2O3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis. Nanoscale, 2014, 6(10): 5402–5409

    Article  CAS  Google Scholar 

  91. Reddy A R N, Reddy Y N, Krishna D R, Himabindu V. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology, 2010, 272 (1–3): 11–16

    Article  CAS  Google Scholar 

  92. Cheng C, Müllerb K H, Koziol K K K, Skepperb J N, Midgley P A, Welland M E, Porter A E. Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials, 2009, 30(25): 4152–4160

    Article  CAS  Google Scholar 

  93. Kang X, Li C, Cheng Z, Ma P A, Hou Z, Lin J. Lanthanide-doped hollow nanomaterials as theranostic agents.Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2014, 6(1): 80–101

    Article  CAS  Google Scholar 

  94. Pei J, Chen G, Jia D, Yu Y, Sun J, Qiu Z, Yu Y. Construction of hollow tellurium hierarchical architecture via a trisodium citrate assisted self-sacrificed template eroding mechanism. RSC Advances, 2014, 4(68): 36257–36261

    Article  CAS  Google Scholar 

  95. Orsi S, Di Maio E, Iannace S, Netti P A. Hollow micro-and nanoparticles by gas foaming. Nano Research, 2014, 7(7): 1018–1026

    Article  CAS  Google Scholar 

  96. Wu L, Qiao X, Cui S, Hong Z, Fan X. Synthesis of monolithic aerogel-like alumina via the accumulation of mesoporous hollow microspheres. Microporous and Mesoporous Materials, 2015, 202: 234–240

    Article  CAS  Google Scholar 

  97. Guo J, Zhang X, Zhang T, Zhou T, Zhang X, Quan Z. Selftemplate synthesis of magnetic cobalt nanotube based on Kirkendall effect. Materials Letters, 2015, 141: 288–290

    Article  CAS  Google Scholar 

  98. Huang T, Qi L M. Solution-phase synthesis of inorganic nanostructures by chemical transformation from reactive templates. Science China Chemistry, 2010, 53(2): 365–371

    Article  CAS  Google Scholar 

  99. Lopez-Haro M, Dubau L, Guétaz L, Bayle-Guillemaud P, Chatenet M, Andre J, Caque N, Rossinot E, Maillard F. Atomic-scale structure and composition of Pt3Co/C nanocrystallites during real PEMFC operation: a STEM–EELS study. Applied Catalysis B: Environmental, 2014, 152–153: 300–30

    Article  Google Scholar 

  100. Erlebacher J, Margetis D. Mechanism of hollow nanoparticle formation due to shape fluctuations. Physical Review Letters, 2014, 112(15): 155505

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., He, Z., Wang, H. et al. Applications of hollow nanomaterials in environmental remediation and monitoring: A review. Front. Environ. Sci. Eng. 9, 770–783 (2015). https://doi.org/10.1007/s11783-015-0811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-015-0811-0

Keywords

Navigation