Skip to main content
Log in

Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The effects of hydraulic retention time (HRT) on the nitrification activities and population dynamics of a conventional activated sludge system fed with synthetic inorganic wastewater were investigated over a period of 260 days. When the HRT was gradually decreased from 30 to 5 h, the specific ammonium-oxidizing rates (SAOR) varied between 0.32 and 0.45 kg NH +4 -N (kg mixed liquor suspended solids (MLSS)·d)−1, and the specific nitrate-forming rates (SNFR) increased from 0.11 to 0.50 kg NO 3 -N (kg MLSS·d)−1, showing that the decrease in HRT led to a significant increase in the nitrite oxidation activity. According to fluorescence in situ hybridization (FISH) analysis results, the proportion of ammonia-oxidizing bacteria (AOBs) among the total bacteria decreased from 33% to 15% with the decrease in HRT, whereas the fraction of nitrite-oxidizing bacteria (NOBs), particularly the fast-growing Nitrobacter sp., increased significantly (from 4% to 15% for NOBs and from 1.5% to 10.6% for Nitrobacter sp.) with the decrease in HRT, which was in accordance with the changes in SNFR. A short HRT favored the relative growth of NOBs, particularly the fast-growing Nitrobacter sp., in the conventional activated sludge system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campos J L, Garrido-Fernandez J M, Mendez R, Lema J M. Nitrification at high ammonia loading rates in an activated sludge unit. Bioresource Technology, 1999, 68(2): 141–148

    Article  CAS  Google Scholar 

  2. Carrera J, Baeza J A, Vicent T, Lafuente J. Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Research, 2003, 37(17): 4211–4221

    Article  CAS  Google Scholar 

  3. Geets J, de Cooman M, Wittebolle L, Heylen K, Vanparys B, de Vos P, Verstraete W, Boon N. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Applied Microbiology and Biotechnology, 2007, 75(1): 211–221

    Article  CAS  Google Scholar 

  4. Okabe S, Satoh H, Watanabe Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Applied and Environmental Microbiology, 1999, 65(7): 3182–3191

    CAS  Google Scholar 

  5. Satoh H, Yamakawa T, Kindaichi T, Ito T, Okabe S. Community structures and activities of nitrifying and denitrifying bacteria in industrial wastewater-treating biofilms. Biotechnology and Bioengineering, 2006, 94(4): 762–772

    Article  CAS  Google Scholar 

  6. Siripong S, Rittmann B E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Research, 2007, 41(5): 1110–1120

    Article  CAS  Google Scholar 

  7. Dionisi H M, Layton A C, Robinson K G, Brown J R, Gregory I R, Parker J J, Sayler G S. Quantification of Nitrosomonas oligotropha and Nitrospira spp. using competitive polymerase chain reaction in bench-scale wastewater treatment reactors operating at different solids retention times. Water Environment Research, 2002, 74(5): 462–469

    Article  CAS  Google Scholar 

  8. Grady C P, Daigger G T, Lim H C. Biological Wastewater Treatment. New York: Marcel Dekker Inc, 1999

    Google Scholar 

  9. Qin Y Y, Zhang X W, Ren H Q, Li D T, Yang H. Population dynamics of ammonia-oxidizing bacteria in an aerated submerged biofilm reactor for micropolluted raw water pretreatment. Applied Microbiology and Biotechnology, 2008, 79(1): 135–145

    Article  CAS  Google Scholar 

  10. Satoh H, Okabe S, Yamaguchi Y, Watanabe Y. Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode. Water Research, 2003, 37(9): 2206–2216

    Article  CAS  Google Scholar 

  11. Park H D, Noguera D R. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Research, 2004, 38(14–15): 3275–3286

    Article  CAS  Google Scholar 

  12. Horz H P, Rotthauwe J H, Lukow T, Liesack W. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. Journal of Microbiological Methods, 2000, 39(3): 197–204

    Article  CAS  Google Scholar 

  13. You S J, Hsu C L, Chuang S H, Ouyang C F. Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems. Water Research, 2003, 37(10): 2281–2290

    Article  CAS  Google Scholar 

  14. Mobarry B K, Wagner M, Urbain V, Rittmann B E, Stahl D A. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Applied and Environmental Microbiology, 1996, 62(6): 2156–2162

    CAS  Google Scholar 

  15. Brandt K K, Hesselsøe M, Roslev P, Henriksen K, Sørensen J. Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains. Applied and Environmental Microbiology, 2001, 67(6): 2489–2498

    Article  CAS  Google Scholar 

  16. Schramm A. Beer de D, Heuvel van den J C, Ottengraf S, Amann R. Microscal distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Applied and Environmental Microbiology, 1999, 65(8): 3690–3696

    CAS  Google Scholar 

  17. Rowan A K, Snape J R, Fearnside D, Barer M R, Curtis T P, Head I M. Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiology Ecology, 2003, 43(2): 195–206

    Article  CAS  Google Scholar 

  18. Yu T, Qi R, Li D, Zhang Y, Yang M. Nitrifier characteristics in submerged membrane bioreactors under different sludge retention times. Water Research, 2010, 44(9): 2823–2830

    Article  CAS  Google Scholar 

  19. Nogueira R, Melo L F, Purkhold U, Wuertz S, Wagner M. Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon. Water Research, 2002, 36(2): 469–481

    Article  CAS  Google Scholar 

  20. Li H Y, Zhang Y, Gao F, Yu T, Yang M. Effects of hydraulic retention time (HRT) on nitrification performance and microbial community of conventional activated sludge (CAS). Environmental Science, 2006, 27(9): 1862–1865 (in Chinese)

    Google Scholar 

  21. Kurisu F, Satoh H, Mino T, Matsuo T. Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method. Water Research, 2002, 36(2): 429–438

    Article  CAS  Google Scholar 

  22. Gao M, Yang M, Li H, Yang Q, Zhang Y. Comparison between a submerged membrane bioreactor and a conventional activated sludge system on treating ammonia-bearing inorganic wastewater. Journal of Biotechnology, 2004, 108(3): 265–269

    Article  CAS  Google Scholar 

  23. Environmental Protection Bureau. The Standard Methods of Water and Wastewater Monitoring and Analysis of China, 4th ed. Beijing: China Environmental Science Press, 2002

    Google Scholar 

  24. Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 1995, 59(1): 143–169

    CAS  Google Scholar 

  25. Li H Y, Yang M, Zhang Y, Yu T, Kamagata Y. Nitrification performance and microbial community dynamics in a submerged membrane bioreactor with complete sludge retention. Journal of Biotechnology, 2006, 123(1): 60–70

    Article  CAS  Google Scholar 

  26. Hesselose M, Brandt K K, Sorensen J. Quantification of ammonia oxidizing bacteria in soil using microcolony technique combined with fluorescence in situ hybridization (MCFU-FISH). FEMS Microbiology Ecology, 2001, 38(2–3): 87–95

    Google Scholar 

  27. Persson F, Wik T, Sörensson F, Hermansso M. Distribution and activity of ammonia oxidizing bacteria in a large full-scale trickling filter. Water Research, 2002, 36(6): 1439–1448

    Article  CAS  Google Scholar 

  28. Purkhold U, Pommerening-Röser A, Juretschko S, Schmid M C, Koops H P, Wagner M. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environmental Microbiology, 2000, 66(12): 5368–5382

    Article  CAS  Google Scholar 

  29. Luxmy B S, Nakajima F, Yamamoto K. Analysis of bacterial community in membrane-separation bioreactors by fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques. Water Science and Technology, 2000, 41(10–11): 259–268

    CAS  Google Scholar 

  30. Wagner M, Rath G, Koops H-P, Flood J, Amann R. In situ analysis of nitrifying bacteria in sewage treatment plants. Water Science and Technology, 1996, 34(1–2): 237–244

    Article  CAS  Google Scholar 

  31. Wang X, Wen X, Criddle C, Wells G, Zhang J, Zhao Y. Community analysis of ammonia-oxidizing bacteria in activated sludge of eight wastewater treatment systems. Journal of Environmental Sciences (China), 2010, 22(4): 627–634

    Article  CAS  Google Scholar 

  32. Andrews JH, Harris RF. γ- and k- Selection and microbial ecology. Advances in Microbial Ecology, 1986, 9: 99–147

    Google Scholar 

  33. Schramm A, De Beer D, Gieseke A, Amann R. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environmental Microbiology, 2000, 2(6): 680–686

    Article  CAS  Google Scholar 

  34. Stehr G, Bottcher B, Dittberner P, Rath G, Koops H P. The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiology Ecology, 1995, 17(3): 177–186

    Article  CAS  Google Scholar 

  35. Hibiya K, Terada A, Tsuneda S, Hirata A. Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor. Journal of Biotechnology, 2003, 100(1): 23–32

    Article  CAS  Google Scholar 

  36. Copp J B, Murphy K. Estimation of the active nitrifying biomass in activated sludge. Water Research, 1995, 29(8): 1855–1862

    Article  CAS  Google Scholar 

  37. Daims H, Ramsing N B, Schleifer K H, Wagner M. Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization. Applied and Environmental Microbiology, 2001, 67(12): 5810–5818

    Article  CAS  Google Scholar 

  38. Hagopian D S, Riley J G. A closer look at the bacteriology of nitrification. Aquacultural Engineering, 1998, 18(4): 223–244

    Article  Google Scholar 

  39. Koop H-P, Pommerening-Roser A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiology Ecology, 2001, 37(1): 1–9

    Article  Google Scholar 

  40. Manser R. Population dynamics and kinetics of nitrifying bacteria in membrane and conventional activated sludge plants. Dissertation for the Doctoral Degree. Swiss Federal Institute of Technology, Zurich, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhang, Y., Yang, M. et al. Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system. Front. Environ. Sci. Eng. 7, 43–48 (2013). https://doi.org/10.1007/s11783-012-0397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-012-0397-8

Keywords

Navigation