Skip to main content
Log in

Design and use of group-specific primers and probes for real-time quantitative PCR

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

Real-time quantitative polymerase chain reaction (qPCR) has gained popularity as a technique to detect and quantify a specific group of target microorganisms from various environmental samples including soil, water, sediments, and sludge. Although qPCR is a very useful technique for nucleic acid quantification, accurately quantifying the target microbial group strongly depends on the quality of the primer and probe used. Many aspects of conducting qPCR assays have become increasingly routine and automated; however, one of the most important aspects, designing and selecting primer and probe sets, is often a somewhat arcane process. In many cases, failed or non-specific amplification can be attributed to improperly designed primer-probe sets. This paper is intended to provide guidelines and general principles for designing group-specific primers and probes for qPCR assays. We demonstrate the effectiveness of these guidelines by reviewing the use of qPCR to study anaerobic processes and biologic nutrient removal processes. qPCR assays using group-specific primers and probes designed with this method, have been used to successfully quantify 16S ribosomal Ribonucleic Acid (16S rRNA) gene copy numbers from target methanogenic and ammonia-oxidizing bacteria in various laboratory- and full-scale biologic processes. Researchers with a good command of primer and probe design can use qPCR as a valuable tool to study biodiversity and to develop more efficient control strategies for biologic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Koops H, Pommerening-Roser A. The lithoautotrophic ammonia-oxidizing bacteria. In: Brenner D J, Krieg N R, Staley J T, Garrity G M, eds. Bergey’s Manual of Systematic Bacteriology. New York: Springer, 2005, 141–147

    Chapter  Google Scholar 

  2. Pommerening-Roser A, Rath G, Koops H. Phylogenetic diversity within the genus Nitrosomonas. Systematic and Applied Microbiology, 1996, 19:344–351

    Google Scholar 

  3. Radl V, Pritsch K, Munch J C, Schloter M. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical. Environmental Pollution, 2005, 137(2):345–353

    Article  CAS  Google Scholar 

  4. Muller A K Westergaard K Christensen S, Sorensen S J. The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiology Ecology, 2001, 36(1):11–19

    Article  CAS  Google Scholar 

  5. Wong M T, Mino T, Seviour R J, Onuki M, Liu W T. In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Water Research, 2005, 39(13):2901–2914

    Article  CAS  Google Scholar 

  6. McMahon K D, Stroot P G, Mackie R I, Raskin L. Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—II: Microbial population dynamics. Water Research, 2001, 35(7):1817–1827

    Article  CAS  Google Scholar 

  7. Rowan A K, Snape J R, Fearnside D, Barer M R, Curtis T P, Head I M. Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiology Ecology, 2003, 43(2):195–206

    Article  CAS  Google Scholar 

  8. Schmeisser C, Steele H, Streit W R. Metagenomics, biotechnology with non-culturable microbes. Applied Microbiology and Biotechnology, 2007, 75(5):955–962

    Article  CAS  Google Scholar 

  9. Nicolaisen M H, Ramsing N B. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. Journal of Microbiological Methods, 2002, 50(2):189–203

    Article  CAS  Google Scholar 

  10. Lee C, Kim J, Hwang K, O’Flaherty V, Hwang S. Quantitative analysis of methanogenic community dynamics in three anaerobic batch digesters treating different wastewaters. Water Research, 2009, 43(1):157–165

    Article  CAS  Google Scholar 

  11. Yu Y, Kim J, Hwang S. Use of real-time PCR for group-specific quantification of aceticlastic methanogens in anaerobic processes: population dynamics and community structures. Biotechnology and Bioengineering, 2006, 93(3):424–433

    Article  CAS  Google Scholar 

  12. Ahn J H, Kim J, Lim J, Hwang S. Biokinetic evaluation and modeling of continuous thiocyanate biodegradation by Klebsiella sp. Biotechnology Progress, 2004, 20(4):1069–1075

    Article  CAS  Google Scholar 

  13. Beller H R, Kane S R, Legler T C, Alvarez P J J. A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environmental Science & Technology, 2002, 36(18):3977–3984

    Article  CAS  Google Scholar 

  14. Zhang T, Fang H H P. Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Applied Microbiology and Biotechnology, 2006, 70(3):281–289

    Article  CAS  Google Scholar 

  15. Khot P D, Fredricks D N. PCR-based diagnosis of human fungal infections. Expert Review of Anti-Infective Therapy, 2009, 7(10):1201–1221

    Article  CAS  Google Scholar 

  16. Song M, Shin S G, Hwang S. Methanogenic population dynamics assessed by real-time quantitative PCR in sludge granule in upflow anaerobic sludge blanket treating swine wastewater. Bioresource Technology, 2010, 101(1 Suppl 1):S23–S28

    Article  CAS  Google Scholar 

  17. Klein D. Quantification using real-time PCR technology: applications and limitations. Trends in Molecular Medicine, 2002, 8(6):257–260

    Article  CAS  Google Scholar 

  18. Schena L, Nigro F, Ippolito A, Gallitelli D. Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology, 2004, 110(9):893–908

    Article  CAS  Google Scholar 

  19. Suzuki M T, Taylor L T, DeLong E F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Applied and Environmental Microbiology, 2000, 66(11):4605–4614

    Article  CAS  Google Scholar 

  20. Takai K, Horikoshi K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Applied and Environmental Microbiology, 2000, 66(11):5066–5072

    Article  CAS  Google Scholar 

  21. Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y. Direct comparison of single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) to characterize a microbial community on the basis of 16S rRNA gene fragments. Journal of Microbiological Methods, 2006, 66(1):165–169

    Article  CAS  Google Scholar 

  22. Wong M L, Medrano J F. Real-time PCR for mRNA quantitation. BioTechniques, 2005, 39(1):75–85

    Article  CAS  Google Scholar 

  23. Smith C J, Osborn A M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiology Ecology, 2009, 67(1):6–20

    Article  CAS  Google Scholar 

  24. Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods (San Diego, Calif.), 2001, 25(4):386–401

    CAS  Google Scholar 

  25. Cook K L, Whitehead T R, Spence C, Cotta M A. Evaluation of the sulfate-reducing bacterial population associated with stored swine slurry. Anaerobe, 2008, 14(3):172–180

    Article  CAS  Google Scholar 

  26. Harms G, Layton A C, Dionisi H M, Gregory I R, Garrett V M, Hawkins S A, Robinson K G, Sayler G S. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environmental Science & Technology, 2003, 37(2):343–351

    Article  CAS  Google Scholar 

  27. Hermansson A, Lindgren P E. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Applied and Environmental Microbiology, 2001, 67(2):972–976

    Article  CAS  Google Scholar 

  28. Layton A C, Dionisi H, Kuo H W, Robinson K G, Garrett V M, Meyers A, Sayler G S. Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant. Applied and Environmental Microbiology, 2005, 71(2):1105–1108

    Article  CAS  Google Scholar 

  29. Lim J, Do H, Shin S G, Hwang S. Primer and probe sets for groupspecific quantification of the genera Nitrosomonas and Nitrosospira using real-time PCR. Biotechnology and Bioengineering, 2008, 99(6):1374–1383

    Article  CAS  Google Scholar 

  30. Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 2005, 89(6):670–679

    Article  CAS  Google Scholar 

  31. Houghton S G, Cockerill F R 3rd. Real-time PCR: overview and applications. Surgery, 2006, 139(1):1–5

    Article  Google Scholar 

  32. Hermansson A, Backman J S K, Svensson B H, Lindgren P. Quantification of ammonia-oxidising bacteria in limed and nonlimed acidic coniferous forest soil using real-time PCR. Soil Biology & Biochemistry, 2004, 36(12):1935–1941

    Article  CAS  Google Scholar 

  33. Sekido T, Bodelier P L E, Shoji T, Suwa Y, Laanbroek H J. Limitations of the use of group-specific primers in real-time PCR as appear from quantitative analyses of closely related ammoniaoxidising species. Water Research, 2008, 42(4–5):1093–1101

    Article  CAS  Google Scholar 

  34. Ashelford K E, Weightman A J, Fry J C. PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Research, 2002, 30(15): 3481–3489

    Article  CAS  Google Scholar 

  35. Marchesi J R. Primer design for PCR amplification of environmental DNA targets. In: Rochelle P A, ed. Environmental Molecular Microbiology: Protocols and Applications. Norfolk, England: Horizon Scientific Press, 2001, 43–54

    Google Scholar 

  36. Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods (San Diego, Calif.), 2001, 25(4):386–401

    CAS  Google Scholar 

  37. Polz M F, Cavanaugh C M. Bias in template-to-product ratios in multitemplate PCR. Applied and Environmental Microbiology, 1998, 64(10):3724–3730

    CAS  Google Scholar 

  38. Hall S J, Hugenholtz P, Siyambalapitiya N, Keller J, Blackall L L. The development and use of real-time PCR for the quantification of nitrifiers in activated sludge. Water Science and Technology, 2002, 46(1–2):267–272

    CAS  Google Scholar 

  39. Rochelle P A, De Leon R, Stewart M H, Wolfe R L. Comparison of primers and optimization of PCR conditions for detection of Cryptosporidium parvum and Giardia lamblia in water. Applied and Environmental Microbiology, 1997, 63(1):106–114

    CAS  Google Scholar 

  40. Labrenz M, Brettar I, Christen R, Flavier S, Bötel J, Höfle M G. Development and application of a real-time PCR approach for quantification of uncultured bacteria in the central Baltic Sea. Applied and Environmental Microbiology, 2004, 70(8):4971–4979

    Article  CAS  Google Scholar 

  41. Zinder S H. Physiological ecology of methanogens. In: Ferry J G, ed. Methanogenesis. New York: Chapman & Hall, 1993, 128–206

    Google Scholar 

  42. Banning N, Brock F, Fry J C, Parkes R J, Hornibrook E R C, Weightman A J. Investigation of the methanogen population structure and activity in a brackish lake sediment. Environmental Microbiology, 2005, 7(7):947–960

    Article  CAS  Google Scholar 

  43. Garrity G M, Holt J G. Phylum AII. Euryarchaeota phy. nov. In: Boone D R, Castenholz R W, eds. Bergey’s manual of systematic bacteriology. New York: Springer-Verlag, 2001, 211–355

    Google Scholar 

  44. Karakashev D, Batstone D J, Angelidaki I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Applied and Environmental Microbiology, 2005, 71(1):331–338

    Article  CAS  Google Scholar 

  45. Raskin L, Stromley J M, Rittmann B E, Stahl D A. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Applied and Environmental Microbiology, 1994, 60(4):1232–1240

    CAS  Google Scholar 

  46. Smith K S, Ingram-Smith C. Methanosaeta, the forgotten methanogen? Trends in Microbiology, 2007, 15(4):150–155

    Article  CAS  Google Scholar 

  47. Raskin L, Zheng D, Griffin M E, Stroot P G, Misra P. Characterization of microbial communities in anaerobic bioreactors using molecular probes. Antonie van Leeuwenhoek, 1995, 68(4):297–308

    Article  CAS  Google Scholar 

  48. Yu Y, Lee C, Hwang S. Analysis of community structures in anaerobic processes using a quantitative real-time PCR method. Water Science and Technology, 2005, 52(1–2):85–91

    CAS  Google Scholar 

  49. Tatara M, Makiuchi T, Ueno Y, Goto M, Sode K. Methanogenesis from acetate and propionate by thermophilic down-flow anaerobic packed-bed reactor. Bioresource Technology, 2008, 99(11): 4786–4795

    Article  CAS  Google Scholar 

  50. Kobayashi T, Li Y Y, Harada H. Analysis of microbial community structure and diversity in the thermophilic anaerobic digestion of waste activated sludge.Water Science and Technology, 2008, 57(8):1199–1205

    Article  CAS  Google Scholar 

  51. Kobayashi T, Yasuda D, Li Y Y, Kubota K, Harada H, Yu H Q. Characterization of start-up performance and archaeal community shifts during anaerobic self-degradation of waste-activated sludge. Bioresource Technology, 2009, 100(21):4981–4988

    Article  CAS  Google Scholar 

  52. Nettmann E, Bergmann I, Mundt K, Linke B, Klocke M. Archaea diversity within a commercial biogas plant utilizing herbal biomass determined by 16S rDNA and mcrA analysis. Journal of Applied Microbiology, 2008, 105(6):1835–1850

    Article  CAS  Google Scholar 

  53. Nettmann E, Bergmann I, Pramschüfer S, Mundt K, Plogsties V, Herrmann C, Klocke M. Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Applied and Environmental Microbiology, 2010, 76(8):2540–2548

    Article  CAS  Google Scholar 

  54. Shin S G, Lee C, Hwang K, Ahn J H, Hwang S. Use of orderspecific primers to investigate the methanogenic diversity in acetate enrichment system. Journal of Industrial Microbiology and Biotechnology, 2008, 35(11):1345–1352

    Article  CAS  Google Scholar 

  55. Lee C, Kim J, Shin S G, O’Flaherty V, Hwang S. Quantitative and qualitative transitions of methanogen community structure during the batch anaerobic digestion of cheese-processing wastewater. Applied Microbiology and Biotechnology, 2010, 87(5):1963–1973

    Article  CAS  Google Scholar 

  56. O’Reilly J, Lee C, Collins G, Chinalia F, Mahony T, O’Flaherty V. Quantitative and qualitative analysis of methanogenic communities in mesophilically and psychrophilically cultivated anaerobic granular biofilims. Water Research, 2009, 43(14):3365–3374

    Article  Google Scholar 

  57. Saengkerdsub S, Anderson R C, Wilkinson H H, Kim W K, Nisbet D J, Ricke S C. Identification and quantification of methanogenic Archaea in adult chicken ceca. Applied and Environmental Microbiology, 2007, 73(1):353–356

    Article  CAS  Google Scholar 

  58. Saengkerdsub S, Herrera P, Woodward C L, Anderson R C, Nisbet D J, Ricke S C. Detection of methane and quantification of methanogenic archaea in faeces from young broiler chickens using real-time PCR. Letters in Applied Microbiology, 2007, 45(6): 629–634

    Article  CAS  Google Scholar 

  59. Denman S E, Tomkins N W, McSweeney C S. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiology Ecology, 2007, 62(3):313–322

    Article  CAS  Google Scholar 

  60. Knapp C W, Dolfing J, Ehlert P A I, Graham D W. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environmental Science & Technology, 2010, 44(2):580–587

    Article  CAS  Google Scholar 

  61. Kim H S, Choung Y K, Ahn S, Oh H S. Enhancing nitrogen removal of piggery wastewater by membrane bioreactor combined with nitrification reactor. Desalination, 2008, 223(1–3):194–204

    Article  CAS  Google Scholar 

  62. Lay-Son M, Drakides C. New approach to optimize operational conditions for the biological treatment of a high-strength thiocyanate and ammonium waste: pH as key factor.Water Research, 2008, 42(3):774–780

    Article  CAS  Google Scholar 

  63. Neufeld R, Greenfield J, Rieder B. Temperature, cyanide and phenolic nitrification inhibition. Water Research, 1986, 20(5): 633–642

    Article  CAS  Google Scholar 

  64. Yuan X J, Gao DW. Effect of dissolved oxygen on nitrogen removal and process control in aerobic granular sludge reactor. Journal of Hazardous Materials, 2010, 178(1–3):1041–1045

    Article  CAS  Google Scholar 

  65. Giotta L, Agostiano A, Italiano F, Milano F, Trotta M. Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere, 2006, 62(9):1490–1499

    Article  CAS  Google Scholar 

  66. Koops H P, Moller U C. The lithotrophic ammonia-oxidizing bacteria. In: Balow A, Truper H G, Dworkin M, Harder W, Schleifer K H, eds. The Prokaryotes. New York: Springer Verlag, 1992, 2625–2637

    Google Scholar 

  67. Head I M, Hiorns W D, Embley T M, McCarthy A J, Saunders J R. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. Journal of General Microbiology, 1993, 139(6):1147–1153

    CAS  Google Scholar 

  68. Bothe H, Jost G, Schloter M, Ward B B, Witzel K. Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiology Reviews, 2000, 24(5):673–690

    Article  CAS  Google Scholar 

  69. Teske A, Alm E, Regan J M, Toze S, Rittmann B E, Stahl D A. Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. Journal of Bacteriology, 1994, 176(21):6623–6630

    CAS  Google Scholar 

  70. Prosser J I, Embley T M. Cultivation-based and molecular approaches to characterisation of terrestrial and aquatic nitrifiers. Antonie van Leeuwenhoek, 2002, 81(1–4):165–179

    Article  CAS  Google Scholar 

  71. Kowalchuk G A, Stephen J R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Review of Microbiology, 2001, 55(1):485–529

    Article  CAS  Google Scholar 

  72. Bano N, Hollibaugh J T. Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in the Arctic Ocean. Applied and Environmental Microbiology, 2000, 66(5):1960–1969

    Article  CAS  Google Scholar 

  73. Kowalchuk G A, Stephen J R, De Boer W, Prosser J I, Embley TM, Woldendorp J W. Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Applied and Environmental Microbiology, 1997, 63(4):1489–1497

    CAS  Google Scholar 

  74. Purkhold U, Pommerening-Röser A, Juretschko S, Schmid M C, Koops H P, Wagner M. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environmental Microbiology, 2000, 66(12): 5368–5382

    Article  CAS  Google Scholar 

  75. Stephen J R, McCaig A E, Smith Z, Prosser J I, Embley T M. Molecular diversity of soil and marine 16S rRNA gene sequences related to β-subgroup ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 1996, 62(11):4147–4154

    CAS  Google Scholar 

  76. Lim J, Lee S, Hwang S. Use of quantitative real-time PCR to monitor population dynamics of ammonia-oxidizing bacteria in batch process. Journal of Industrial Microbiology and Biotechnology, 2008, 35(11):1339–1344

    Article  CAS  Google Scholar 

  77. Limpiyakorn T, Shinohara Y, Kurisu F, Yagi O. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiology Ecology, 2005, 54(2):205–217

    Article  CAS  Google Scholar 

  78. Schramm A. In situ analysis of structure and activity of the nitrifying community in biofilms, aggregates, and sediments. Geomicrobiology Journal, 2003, 20(4):313–333

    Article  CAS  Google Scholar 

  79. Do H, Lim J, Shin S G, Wu Y J, Ahn J H, Hwang S. Simultaneous effect of temperature, cyanide and ammonia-oxidizing bacteria Juntaek LIM et al. Design and use of group-specific primers and probes for real-time quantitative PCR 11 concentrations on ammonia oxidation. Journal of Industrial Microbiology & Biotechnology, 2008, 35(11):1331–1338

    Article  CAS  Google Scholar 

  80. Forney L J, Zhou X, Brown C J. Molecular microbial ecology: land of the one-eyed king. Current Opinion in Microbiology, 2004, 7(3):210–220

    Article  CAS  Google Scholar 

  81. Nocker A, Camper A K. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Applied and Environmental Microbiology, 2006, 72(3):1997–2004

    Article  CAS  Google Scholar 

  82. Bergmann I, Mundt K, Sontag M, Baumstark I, Nettmann E, Klocke M. Influence of DNA isolation on Q-PCR-based quantification of methanogenic Archaea in biogas fermenters. Systematic and Applied Microbiology, 2010, 33(2):78–84

    Article  CAS  Google Scholar 

  83. Steinberg L M, Regan J M. mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Applied and Environmental Microbiology, 2009, 75(13):4435–4442

    Article  CAS  Google Scholar 

  84. Wells G F, Park H D, Yeung C H, Eggleston B, Francis C A, Criddle C S. Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environmental Microbiology, 2009, 11(9):2310–2328

    Article  CAS  Google Scholar 

  85. Lozada M, Figuerola E L M, Itria R F, Erijman L. Replicability of dominant bacterial populations after long-term surfactant-enrichment in lab-scale activated sludge. Environmental Microbiology, 2006, 8(4):625–638

    Article  CAS  Google Scholar 

  86. Lee C, Kim J, Shin S G, Hwang S. Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater. FEMS Microbiology Ecology, 2008, 65(3):544–554

    Article  CAS  Google Scholar 

  87. Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K. Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Applied Microbiology and Biotechnology, 2006, 72(2):401–415

    Article  CAS  Google Scholar 

  88. Zhang H, Banaszak J E, Parameswaran P, Alder J, Krajmalnik-Brown R, Rittmann B E. Focused-Pulsed sludge pre-treatment increases the bacterial diversity and relative abundance of acetoclastic methanogens in a full-scale anaerobic digester. Water Research, 2009, 43(18):4517–4526

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seokhwan Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, J., Shin, S.G., Lee, S. et al. Design and use of group-specific primers and probes for real-time quantitative PCR. Front. Environ. Sci. Eng. China 5, 28–39 (2011). https://doi.org/10.1007/s11783-011-0302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-011-0302-x

Keywords

Navigation