Skip to main content
Log in

Adsorption of humic acid from aqueous solution on bilayer hexadecyltrimethyl ammonium bromide-modified zeolite

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

Surfactant-modified natural zeolites (SMNZ) with different coverage types were prepared by loading hexadecyltrimethyl ammonium bromide (HTAB) onto the surface of a natural zeolite. The adsorption behavior of humic acid (HA) on SMNZ was investigated. Results indicate that the adsorbent SMNZ exhibited a higher affinity toward HA than the natural zeolite. HA removal efficiency by SMNZ increased with HTAB loading. Coexisting Ca2+ in solution favored HA adsorption onto SMNZ. Adsorption capacity decreased with an increasing solution pH. For typical SMNZ with bilayer HTAB coverage, HA adsorption process is well described by a pseudo-second-order kinetic model. The experimental isotherm data fitted well with the Langmuir model. Calculated maximum HA adsorption capacities for SMNZ with bilayer HTAB coverage at pH 5.5 and 7.5 were 63 and 41 mg·g−1, respectively. E2/E3 (absorbance at 250 nm to that at 365 nm) and E4/E6 (absorbance at 465 nm to that at 665 nm) ratios of the residual HA in solution were lower than that of the original HA solution. This indicates that the HA fractions with high polar functional groups, low molecular weight (MW), and aromaticity had a stronger tendency for adsorption onto SMNZ with bilayer HTAB coverage. Results show that HTAB-modified natural zeolite is a promising adsorbent for removal of HA from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ghernaout D, Ghernaout B, Saiba A, Boucherit A, Kellil A. Removal of humic acids by continuous electromagnetic treatment followed by electrocoagulation in batch using aluminium electrodes. Desalination, 2009, 239(1–3): 295–308

    Article  CAS  Google Scholar 

  2. Park S J, Yoon T I. Effects of iron species and inert minerals on coagulation and direct filtration for humic acid removal. Desalination, 2009, 239(1–3): 146–158

    Article  CAS  Google Scholar 

  3. Seredyńskasobecka B, Tomaszewska M, Morawski A W. Removal of humic acids by the ozonation-biofiltration process. Desalination, 2006, 198(1–3): 265–273

    Article  Google Scholar 

  4. Lowe J, Hossain M M. Application of ultrafiltration membranes for removal of humic acid from drinking water. Desalination, 2008, 218(1–3): 343–354

    Article  CAS  Google Scholar 

  5. Selcuk H, Bekbolet M. Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO(2) coated photoanode. Chemosphere, 2008, 73(5): 854–858

    Article  CAS  Google Scholar 

  6. Liu S, Lim M, Fabris R, Chow C, Chiang K, Drikas M, Amal R. Removal of humic acid using TiO2 photocatalytic process-fractionation and molecular weight characterisation studies. Chemosphere, 2008, 72(2): 263–271

    Article  CAS  Google Scholar 

  7. Siéliéchi J M, Lartiges B S, Kayem G J, Hupont S, Frochot C, Thieme J, Ghanbaja J, d’Espinose de la Caillerie J B, Barrès O, Kamga R, Levitz P, Michot L J. Changes in humic acid conformation during coagulation with ferric chloride: implications for drinking water treatment. Water Research, 2008, 42(8–9): 2111–2123

    Article  Google Scholar 

  8. Zhao L, Luo F, Wasikiewicz J M, Mitomo H, Nagasawa N, Yagi T, Tamada M, Yoshii F. Adsorption of humic acid from aqueous solution onto irradiation-crosslinked carboxymethylchitosan. Bioresource Technology, 2008, 99(6): 1911–1917

    Article  CAS  Google Scholar 

  9. Tao Q, Xu Z Y, Wang J H, Liu F L, Wan H Q, Zheng S R. Adsorption of humic acid to aminopropyl functionalized SBA-15. Microporous and Mesoporous Materials, 2010, 131(1–3): 177–185

    Article  CAS  Google Scholar 

  10. Wang J N, Zhou Y, Li A M, Xu L. Adsorption of humic acid by bifunctional resin JN-10 and the effect of alkali-earth metal ions on the adsorption. Journal of Hazardous Materials, 2010, 176(1–3): 1018–1026

    Article  CAS  Google Scholar 

  11. Doulia D, Leodopoulos Ch, Gimouhopoulos K, Rigas F. Adsorption of humic acid on acid-activated Greek bentonite. Journal of Colloid and Interface Science, 2009, 340(2): 131–141

    Article  CAS  Google Scholar 

  12. Wang J N, Li A M, Zhou Y, Xu L. Study on the influence of humic acid of different molecular weight on basic ion exchange resin’s adsorption capacity. Chinese Chemical Letters, 2009, 20(12): 1478–1482

    Article  Google Scholar 

  13. Zhang X, Bai R B. Mechanisms and kinetics of humic acid adsorption onto chitosan-coated granules. Journal of Colloid and Interface Science, 2003, 264(1): 30–38

    Article  CAS  Google Scholar 

  14. Gasser MS, Mohsen H T, Aly H F. Humic acid adsorption onto Mg/Fe layered double hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 331(3): 195–201

    Article  CAS  Google Scholar 

  15. Anirudhan T S, Suchithra P S, Rijith S. Amine-modified polyacrylamide-bentonite composite for the adsorption of humic acid in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 326(3): 147–156

    Article  CAS  Google Scholar 

  16. Wan Ngah W S, Hanafiah M A K M, Yong S S. Adsorption of humic acid from aqueous solutions on crosslinked chitosan-epichlorohydrin beads: kinetics and isotherm studies. Colloids and Surfaces. B, Biointerfaces, 2008, 65(1): 18–24

    Article  CAS  Google Scholar 

  17. Vreysen S, Maes A. Adsorption mechanism of humic and fulvic acid onto Mg/Al layered double hydroxides. Applied Clay Science, 2008, 38(3–4): 237–249

    Article  CAS  Google Scholar 

  18. Wang S B, Zhu Z H. Humic acid adsorption on fly ash and its derived unburned carbon. Journal of Colloid and Interface Science, 2007, 315(1): 41–46

    Article  CAS  Google Scholar 

  19. Yan W L, Bai R B. Adsorption of lead and humic acid on chitosan hydrogel beads. Water Research, 2005, 39(4): 688–698

    Article  CAS  Google Scholar 

  20. Hartono T, Wang S B, Ma Q, Zhu Z H. Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution. Journal of Colloid and Interface Science, 2009, 333(1): 114–119

    Article  CAS  Google Scholar 

  21. Wang S B, Ma Q, Zhu Z H. Characteristics of unburned carbons and their application for humic acid removal from water. Fuel Processing Technology, 2009, 90(3): 375–380

    Article  CAS  Google Scholar 

  22. Anirudhan T S, Ramachandran M. Surfactant-modified bentonite as adsorbent for the removal of humic acid from wastewaters. Applied Clay Science, 2007, 35(3–4): 276–281

    Article  CAS  Google Scholar 

  23. Duan J, Wilson F, Graham N, Tay J H. Adsorption of humic acid by powdered activated carbon in saline water conditions. Desalination, 2003, 151(1): 53–66

    Article  CAS  Google Scholar 

  24. Deng S B, Bai R B. Adsorption and desorption of humic acid on aminated polyacrylonitrile fibers. Journal of Colloid and Interface Science, 2004, 280(1): 36–43

    Article  CAS  Google Scholar 

  25. Chang M Y, Juang R S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. Journal of Colloid and Interface Science, 2004, 278(1): 18–25

    Article  CAS  Google Scholar 

  26. Wang S B, Peng Y L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 2010, 156(1): 11–24

    Article  CAS  Google Scholar 

  27. Leyvaramos R, Jacobo-Azuara A, Diaz-Flores P E, Guerrero-Coronado R M, Mendoza-Barron J, Berber-Mendoza M S. Adsorption of chromium (VI) from an aqueous solution on a surfactant-modified zeolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 330(1): 35–41

    Article  CAS  Google Scholar 

  28. Chutia P, Kato S, Kojima T, Satokawa S. Adsorption of As(V) on surfactant-modified natural zeolites. Journal of Hazardous Materials, 2009, 162(1): 204–211

    Article  CAS  Google Scholar 

  29. Ionescu L G, Tokuhiro T, Czerniawski B J. Formation of micelles of hexadecyltrimethylammonium bromide in water-N,N-dimethylformamide solutions. Bulletin of the Chemical Society of Japan, 1979, 52(3): 922–924

    Article  CAS  Google Scholar 

  30. Hrenovic J, Rozic M, Sekovanic L, Anic-Vucinic A. Interaction of surfactant-modified zeolites and phosphate accumulating bacteria. Journal of Hazardous Materials, 2008, 156(1–3): 576–582

    Article  CAS  Google Scholar 

  31. Wingenfelder U, Furrer G, Schulin R. Sorption of antimonate by HDTMA-modified zeolite. Microporous and Mesoporous Materials, 2006, 95(1–3): 265–271

    Article  CAS  Google Scholar 

  32. Simpson J A, Bowman R S. Nonequilibrium sorption and transport of volatile petroleum hydrocarbons in surfactant-modified zeolite. Journal of Contaminant Hydrology, 2009, 108(1–2): 1–11

    Article  CAS  Google Scholar 

  33. Li Z H, Burt T, Bowman R S. Sorption of ionizable organic solutes by surfactant-modified zeolite. Environmental Science & Technology, 2000, 34(17): 3756–3760

    Article  CAS  Google Scholar 

  34. Li Z H, Bowman R S. Sorption of perchloroethylene by surfactantmodified zeolite as controlled by surfactant loading. Environmental Science & Technology, 1998, 32(15): 2278–2282

    Article  CAS  Google Scholar 

  35. Wang S G, Gong W X, Liu X W, Gao B Y, Yue Q Y. Removal of fulvic acids using the surfactantmodified zeolite in a fixed-bed reactor. Separation and Purification Technology, 2006, 51(3): 367–373

    Article  CAS  Google Scholar 

  36. Fang J P, Zhang P Y, Zeng G M, Zou S, Yang L, Wu H, Gao Q. Research on humic acid adsorption by modified clinoptilolite. China Water & Wastewater, 2008, 24(23): 48–51 (in Chinese)

    CAS  Google Scholar 

  37. Rozić M, Ivanec Sipusić Đ, Sekovanić L, Miljanić S, Curković L, Hrenović J. Sorption phenomena of modification of clinoptilolite tuffs by surfactant cations. Journal of Colloid and Interface Science, 2009, 331(2): 295–301

    Article  Google Scholar 

  38. Vaia R A, Teukolsky R K, Giannelis E P. Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials, 1994, 6(7): 1017–1022

    Article  CAS  Google Scholar 

  39. Jones M N, Bryan N D. Colloidal properties of humic substances. Advances in Colloid and Interface Science, 1998, 78(1): 1–48

    Article  CAS  Google Scholar 

  40. Yang K, Xing B S. Adsorption of fulvic acid by carbon nanotubes from water. Environmental pollution, 2009, 157(4): 1095–1100

    Article  CAS  Google Scholar 

  41. Peuravuori J, Pihlaja K. Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta, 1997, 337(2): 133–149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, Y., Lin, J., Qiu, Y. et al. Adsorption of humic acid from aqueous solution on bilayer hexadecyltrimethyl ammonium bromide-modified zeolite. Front. Environ. Sci. Eng. China 5, 65–75 (2011). https://doi.org/10.1007/s11783-010-0277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-010-0277-z

Keywords

Navigation