Skip to main content
Log in

Experimental study on nonlinear mechanical behavior and sampling damage characteristics of rocks from depths of 4900–6830 m in Well Songke-2

松科二井4900~6830 m不同深度岩石非线性力学行为和取样损伤特性试验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Based on the deep cores of Well Songke-2 (SK-2), uniaxial compression tests of deep rock from 8 different depths in the 4900–6830 m range were carried out, and deformation and failure characteristics were analyzed in detail. It was found that in the range of 4900–6830 m, the mechanical parameters of uniaxial compression tests of rocks changed nonlinearly with depth, and the strength was positively correlated with the hard mineral content. Comparing the rock failure of these samples with the 4500–7000 m core disc segment in SK-2, it was found that the failure of magmatic rock samples in both cases was smoother than that of sedimentary rock, indicating that deep magmatic rocks more easily released energy during the failure process. From depths of 4900–6000 m, prepeak characteristic stresses increased with increasing depth, while from depths of 6000–6830 m, they decreased with increasing depth. Fracture closure stress was used to characterize rock sampling damage at depths of 1000–6830 m, and it was found that sampling damage varied linearly with burial depth in sedimentary strata, while in igneous strata, sampling damage remained stable with increasing burial depth.

摘要

本文利用松科二井的深部岩芯开展了4900~6830 m范围内不同深度岩石的单轴压缩力学测试,, 详细分析了不同深度岩石的变形破坏特征规律, 并基于力学测试结果揭示了深部岩石的取样损伤随埋 深的变化特点。研究发现:在4900~6830 m范围内, 岩石单轴压缩的各力学参数随深度非线性变化, 深部岩石的强度特性与硬相矿物的含量呈正相关; 单轴压缩破坏模式多为突发性的轴向拉伸劈裂, 对 比研究岩芯破坏断面和松科二井4500~7000 m饼化岩芯的断面, 发现在两种破坏案例中岩浆岩试样的 破坏断面均更加光洁; 在4900~6000 m范围内, 岩石峰前特征应力都随深度的增加而增大, 主要受控 于沉积岩的重力沉积作用; 在6000~6830 m范围内, 岩石特征应力随深度的增加而减小; 损伤应力在 不同深度岩石的应力应变曲线中位置相对稳定; 利用裂纹闭合应力表征了不同深度岩石的取样损伤, 发现在0~6250 m沉积岩地层中, 岩芯的裂纹闭合应力随深度的增加呈线性增加趋势, 而在6250~ 7000 m岩浆岩地层内, 裂纹闭合应力随深度的增加趋于稳定。研究成果可为深地科学规律探索和深部 工程实践提供参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. GAO Ming-zhong, ZHANG Jian-guo, LI Sheng-wei, et al, Calculating changes in fractal dimension of surface cracks to quantify how the dynamic loading rate affects rock failure in deep mining [J]. Journal of Central South University, 2020, 27(10): 3013–3024. DOI: https://doi.org/10.1007/s11771-020-4525-5.

    Article  Google Scholar 

  2. XIE He-ping, LI Cong, HE Zhi-qiang, et al. Experimental study on rock mechanical behavior retaining the in situ geological conditions at different depths [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104548. DOI: https://doi.org/10.1016/j.ijrmms.2020.104548.

    Article  Google Scholar 

  3. GONG Feng-qiang, ZHONG Wen-hui, GAO Ming-zhong, et al, Dynamic characteristics of high stressed red sandstone subjected to unloading and impact loads [J]. Journal of Central South University, 2022, 29(2): 596–610. DOI: https://doi.org/10.1007/s11771-022-4944-6.

    Article  Google Scholar 

  4. LUO Yong, GONG Feng-qiang, LI Xi-bing, et al, Experimental simulation investigation of influence of depth on spalling characteristics in circular hard rock tunnel [J]. Journal of Central South University, 2020, 27(3): 891–910. DOI: https://doi.org/10.1007/s11771-020-4339-5.

    Article  Google Scholar 

  5. YANG Ben-gao, GAO Ming-zhong, XIE Jing, et al, Exploration of weakening mechanism of uniaxial compressive strength of deep sandstone under microwave irradiation [J]. Journal of Central South University, 2022, 29(2): 611–623. DOI: https://doi.org/10.1007/s11771-022-4910-3.

    Article  Google Scholar 

  6. XIE He-ping, Research review of the state key research development program of China: Deep rock mechanics and mining theory [J]. Journal of China Coal Society, 2019, 44(5): 1283–1305. DOI: https://doi.org/10.13225/j.cnki.jccs.2019.6038. (in Chinese)

    Google Scholar 

  7. XU Xiao-li, KARAKUS M, GAO Feng, et al, Thermal damage constitutive model for rock considering damage threshold and residual strength [J]. Journal of Central South University, 2018, 25(10): 2523–2536. DOI: https://doi.org/10.1007/s11771-018-3933-2.

    Article  Google Scholar 

  8. GAO Ming-zhong, XIE Jing, GAO Ya-nan, et al, Mechanical behavior of coal under different mining rates: A case study from laboratory experiments to field testing [J]. International Journal of Mining Science and Technology, 2021, 31(5): 825–841. DOI: https://doi.org/10.1016/j.ijmst.2021.06.007.

    Article  Google Scholar 

  9. GONG Feng-qiang, WU Wu-xing, ZHANG Le, Brazilian disc test study on tensile strength-weakening effect of high pre-loaded red sandstone under dynamic disturbance [J]. Journal of Central South University, 2020, 27(10): 2899–2913. DOI: https://doi.org/10.1007/s11771-020-4517-5.

    Article  Google Scholar 

  10. SU You-qiang, GONG Feng-qiang, LUO Song, et al, Experimental study on energy storage and dissipation characteristics of granite under two-dimensional compression with constant confining pressure [J]. Journal of Central South University, 2021, 28(3): 848–865. DOI: https://doi.org/10.1007/s11771-021-4649-2.

    Article  Google Scholar 

  11. HERRMANN J, RYBACKI E, SONE H, et al, Deformation experiments on bowland and posidonia shale—Part I: Strength and Young’s modulus at ambient and in situ pc-T conditions [J]. Rock Mechanics and Rock Engineering, 2018, 51(12): 3645–3666. DOI: https://doi.org/10.1007/s00603-018-1572-4.

    Article  Google Scholar 

  12. GAO Ming-zhong, XIE Jing, GUO Jun, et al, Fractal evolution and connectivity characteristics of mining-induced crack networks in coal masses at different depths [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(1): 9. DOI: https://doi.org/10.1007/s40948-020-00207-4.

    Article  Google Scholar 

  13. LI Cong, XIE He-ping, GAO Ming-zhong, et al. Novel designs of pressure controllers to enhance the upper pressure limit for gas-hydrate-bearing sediment sampling [J]. Energy, 2021, 227: 120405. DOI: https://doi.org/10.1016/j.energy.2021.120405.

    Article  Google Scholar 

  14. GAO Ming-zhong, WANG Ming-yao, XIE Jing, et al, In-situ disturbed mechanical behavior of deep coal rock [J]. Journal of China Coal Society, 2020, 45(8): 2691–2703. DOI: https://doi.org/10.13225/j.cnki.jccs.2020.0784.

    Google Scholar 

  15. LI Cong, PEI Jian-liang, WU Nian-han, et al, Rotational failure analysis of spherical-cylindrical shell pressure controllers related to gas hydrate drilling investigations [J]. Petroleum Science, 2022, 19(2): 789–799. DOI: https://doi.org/10.1016/j.petsci.2022.02.005.

    Article  Google Scholar 

  16. HE Zhi-qiang, YANG Yang, YU Bo, et al, Research on properties of hollow glass microspheres/epoxy resin composites applied in deep rock in situ temperature-preserved coring [J]. Petroleum Science, 2022, 19(2): 720–730. DOI: https://doi.org/10.1016/j.petsci.2021.10.028.

    Article  Google Scholar 

  17. GAO Ming-zhong, YANG Ben-gao, XIE Jing, et al, The mechanism of microwave rock breaking and its potential application to rock-breaking technology in drilling [J]. Petroleum Science, 2022, 19(3): 1110–1124. DOI: https://doi.org/10.1016/j.petsci.2021.12.031.

    Article  Google Scholar 

  18. PATERSON M S, WONG T F. Experimental rock deformation-the brittle field [M]. 2nd. Berlin: Springer, 2005.

    Google Scholar 

  19. GAO Ming-zhong, ZHANG Zhi-long, YIN Xian-gang, et al, The location optimum and permeability-enhancing effect of a low-level shield rock roadway [J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2935–2948. DOI: https://doi.org/10.1007/s00603-018-1461-x.

    Article  Google Scholar 

  20. PATERSON M S, Experimental deformation and faulting in wombeyan marble [J]. Geological Society of America Bulletin, 1958, 69(4): 465. DOI: https://doi.org/10.1130/0016-7606(1958)69[465:edafiw]2.0.co;2.

    Article  Google Scholar 

  21. SINGH J, RAMAMURTHY T, RAO G V. Strength of rocks at depth[C]//ISRM International Symposium. Pau, France, 1989: ISRM-IS-1989-006.

  22. WAWERSIK W R, FAIRHURST C, A study of brittle rock fracture in laboratory compression experiments [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1970, 7(5): 561–575. DOI: https://doi.org/10.1016/0148-9062(70)90007-0.

    Article  Google Scholar 

  23. ZHANG Jun-wen, DING Lu-jiang, SONG Zhi-xiang, et al, Mechanical properties of deep sandstones under loading rate effect [J]. Journal of Central South University, 2022, 29(6): 1933–1944. DOI: https://doi.org/10.1007/s11771-022-5069-7.

    Article  Google Scholar 

  24. ZHU Zhen-nan, YANG Sheng-qi, RANJITH P G, et al, A statistical thermal damage constitutive model for rock considering characteristics of the void compaction stage based on normal distribution [J]. Bulletin of Engineering Geology and the Environment, 2022, 81(8): 306. DOI: https://doi.org/10.1007/s10064-022-02794-w.

    Article  Google Scholar 

  25. LI Jun-ru, LI Hai-bo, Experimental study on mechanical properties of rocks with different buried depths[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(A1): 948–951. (in Chinses)

    Google Scholar 

  26. LI P, WANG J, Experimental on mechanical properties of overlying strata rock changed with the occurrence depth [J]. Journal of Harbin Institute of Technology, 2015, 47(12): 98–101. DOI: https://doi.org/10.11918/j.issn.0367-6234.2015.12.017.

    MathSciNet  Google Scholar 

  27. LI Bin, XU Dong, Study on the law of mechanical parameters of rock in deep coal bearing strata[J]. Journal of Anhui University of Science and Technology: Natural Science, 2017, 37(6): 52–59. (in Chinese)

    Google Scholar 

  28. DU Sheng-hao, MAN Ke, ZHOU Hong-wei, et al, Experimental study of the effect of depth on mechanical parameters of rock [J]. Chinese Science Bulletin, 2010, 55(34): 3276–3284. DOI: https://doi.org/10.1360/972010-786. (in Chinese)

    Article  Google Scholar 

  29. ZUO Jian-ping, CHAI Neng-bin, ZHOU Hong-wei, Investigation on failure behavior of basalt from different depths based on three-point bending meso-experiments [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4): 689–695. (in Chinese)

    Google Scholar 

  30. MAN Ke, LIU Xiao-li, GONG Feng-qiang, et al, Research on dynamic tension property of granite at different depth in Tianhu area of Xinjiang autonomous region [J]. Engineering Mechanics, 2018, 35(3): 200–209. (in Chinese)

    Google Scholar 

  31. ZHENG Shi-huan. Study on the evolution law and microscopic mechanism of rock strength parameters with depth [D]. Huainan: Anhui University of Science & Technology, 2019. (in Chinese)

    Google Scholar 

  32. ZHAO Yi-xin, WANG Xiao-liang, GUO Yan-ding, et al, Brittleness index of sandstones from different buried depths based on energy release rate [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 248–262. DOI: https://doi.org/10.13722/j.cnki.jrme.2020.0608. (in Chinese)

    Google Scholar 

  33. ZENG Qiang, HUANG Xiao-rong, WANG Xiao-jun, et al, Experimental study on rock burst tendency and acoustic emission characteristics of limestone at different buried depths [J]. Gold Science and Technology, 2021, 29(6): 863–873. (in Chinese)

    Google Scholar 

  34. LU Yi-qiang, LI Cong, HE Zhi-qiang, et al, Variations in the physical and mechanical properties of rocks from different depths in the Songliao Basin under uniaxial compression conditions [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6(3): 43. DOI: https://doi.org/10.1007/s40948-020-00163-z.

    Article  Google Scholar 

  35. FENG Zhi-qiang, JIA Cheng-zao, XIE Xi-nong, et al, Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, northeast China [J]. Basin Research, 2010, 22(1): 79–95. DOI: https://doi.org/10.1111/j.1365-2117.2009.00445.x.

    Article  Google Scholar 

  36. WANG Cheng-shan, SCOTT R W, WAN Xiao-qiao, et al. Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric Sea strata [J]. Earth-Science Reviews, 2013, 126: 275–299. DOI: https://doi.org/10.1016/j.earscirev.2013.08.016.

    Article  Google Scholar 

  37. YANG Ming-qing, HE Zhi-qiang, LI Cong, et al. Experimental study on physical characteristics of deep rocks at different depths in Songliao Basin [J]. Geofluids, 2022, 2022: 1–12. DOI: https://doi.org/10.1155/2022/6070683.

    Google Scholar 

  38. MTS rock and concrete mechanics testing systems-technical description [M]. USA: MTS Systems Corporation, 2004.

  39. JIANG Guang-hui, ZUO Jian-ping, LI Yu-lin, et al, Experimental investigation on mechanical and acoustic parameters of different depth shale under the effect of confining pressure [J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4273–4286. DOI: https://doi.org/10.1007/s00603-019-01870-0.

    Article  Google Scholar 

  40. GAO Ming-zhong, HAO Hai-chun, XUE Shou-ning, et al. Discing behavior and mechanism of cores extracted from Songke-2 well at depths below 4, 500m [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 149: 104976. DOI: https://doi.org/10.1016/j.ijrmms.2021.104976.

    Article  Google Scholar 

  41. EBERHARDT E, STEAD D, STIMPSON B, Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3): 361–380. DOI: https://doi.org/10.1016/S0148-9062(99)00019-4.

    Article  Google Scholar 

  42. MARTIN C D. The strength of massive Lac du Bonnet granite around underground openings [D]. Winnipeg, Manitoba, Canada: University of Manitoba, 1993.

    Google Scholar 

  43. HOLT R M, BRIGNOLI M, KENTER C J, Core quality: Quantification of coring-induced rock alteration [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(6): 889–907. DOI: https://doi.org/10.1016/S1365-1609(00)00009-5.

    Article  Google Scholar 

  44. KENTER C J, BRIGNOLI M, HOLT R M. CMS (constant mean stress) vs, UCS (unconfined strength) tests: A tool to reduce core damage effects [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3–4): 129.e1–129.e11. DOI: https://doi.org/10.1016/S1365-1609(97)00139-1.

    Google Scholar 

  45. BRIGNOLI M, FANUEL P, HOLT R M, et al. Effects on core quality of a bias stress applied during coring [C]//Proceedings of EUROCK′98. Trondheim, Norway: SPE, 1998. DOI: https://doi.org/10.2118/47262-ms.

    Book  Google Scholar 

  46. CHARLEZ P, HAMAMDJIAN C, DESPAX D. Is the microcracking of a rock a memory of its initial state of stress? [C]//Proceedings of International Symposium on Rock Stress and Rock Stress Measurements. Stockholm, Sweden, 1986: 341–350.

  47. DYKE C G. Core discing: Its potential as an indicator of principal in situ stress directions [C]//Proc International Symposium on Rock at Great Depth. Rotterdam, 1989: 1057–1064.

  48. EBERHARDT E, STEAD D, STIMPSON B, Effects of sample disturbance on the stress-induced microfracturing characteristics of brittle rock [J]. Canadian Geotechnical Journal, 1999, 36(2): 239–250. DOI: https://doi.org/10.1139/t98-109.

    Article  Google Scholar 

  49. MARTIN C D, STIMPSON B, The effect of sample disturbance on laboratory properties of Lac du Bonnet granite [J]. Canadian Geotechnical Journal, 1994, 31(5): 692–702. DOI: https://doi.org/10.1139/t94-081.

    Article  Google Scholar 

  50. PENG Jun, RONG Guan, CAI Ming, et al. A model for characterizing crack closure effect of rocks [J]. Engineering Geology, 2015, 189: 48–57. DOI: https://doi.org/10.1016/j.enggeo.2015.02.004.

    Article  Google Scholar 

  51. ZHOU X P, Localization of deformation and stress–strain relation for mesoscopic heterogeneous brittle rock materials under unloading [J]. Theoretical and Applied Fracture Mechanics, 2005, 44(1): 27–43. DOI: https://doi.org/10.1016/j.tafmec.2005.05.003.

    Article  Google Scholar 

  52. ZHOU X P, ZHANG Y X, HA Q L, et al, Micromechanical modelling of the complete stress-strain relationship for crack weakened rock subjected to compressive loading [J]. Rock Mechanics and Rock Engineering, 2008, 41(5): 747–769. DOI: https://doi.org/10.1007/s00603-007-0130-2.

    Article  Google Scholar 

  53. ZHOU X P, LIAN Y J, WONG L N Y, et al. Understanding the fracture behavior of brittle and ductile multi-flawed rocks by uniaxial loading by digital image correlation [J]. Engineering Fracture Mechanics, 2018, 199: 438–460. DOI: https://doi.org/10.1016/j.engfracmech.2018.06.007.

    Article  Google Scholar 

  54. ZHOU Xiao-ping, ZHANG Jian-zhi, QIAN Qi-hu, et al. Experimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and AE techniques [J]. Journal of Structural Geology, 2019, 126: 129–145. DOI: https://doi.org/10.1016/j.jsg.2019.06.003.

    Article  Google Scholar 

  55. ZHANG Jian-zhi, ZHOU Xiao-ping, AE event rate characteristics of flawed granite: From damage stress to ultimate failure [J]. Geophysical Journal International, 2020, 222(2): 795–814. DOI: https://doi.org/10.1093/gji/ggaa207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-nan Li  (李佳南).

Additional information

Contributors

The overarching research goals were developed by YANG Ming-qing, XIE He-ping, GAO Ming-zhong and LI Jia-nan. YANG Mingqing, LI Jia-nan and WEI Zi-jie conducted the experiment, and analyzed the measured data. YANG Ming-qing, GAO Ming-zhong, CHEN Ling and LI Cong analyzed the calculated results. The initial draft of the manuscript was written by YANG Mingqing, LI Jia-nan and HE Zhi-qiang. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

YANG Ming-qing, LI Jia-nan, GAO Ming-zhong, CHEN Ling, LI Cong, HE Zhi-qiang, WEI Zi-jie and XIE He-ping declare that they have no conflict of interest.

Foundation item

Projects(51827901, U2013603) supported by the National Natural Science Foundation of China; Project (2019ZT08G315) supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams, China; Project(JCYJ20190808153416970) supported by Shenzhen Basic Research Project, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Mq., Li, Jn., Gao, Mz. et al. Experimental study on nonlinear mechanical behavior and sampling damage characteristics of rocks from depths of 4900–6830 m in Well Songke-2. J. Cent. South Univ. 30, 1296–1310 (2023). https://doi.org/10.1007/s11771-023-5310-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5310-z

Key words

关键词

Navigation