Skip to main content
Log in

Sulfide mineral bioleaching: Understanding of microbe-chemistry assisted hydrometallurgy technology and acid mine drainage environment protection

硫化矿物生物冶金: 微生物-化学协同湿法冶金过程及酸性矿山废水的环境保护情况

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Bioleaching is regarded as an essential technology to treat low grade minerals, with the distinctive superiorities of lower-cost and environment-friendly compared with traditional pyrometallurgy method. However, the bioleaching efficiency is unsatisfactory owing to the passivation film formed on the minerals surface. It is of particular interest to know the dissolution and passivation mechanism of sulfide minerals in the presence of microorganism. Although bioleaching can be useful in extracting metals, it is a double-edged sword. Metallurgical activities have caused serious environmental problems such as acid mine drainage (AMD). The understanding of some common sulfide minerals bioleaching processes and protection of Amd environment is reviewed in this article.

摘要

生物冶金是用于处理低品位矿物的一项必要的技术, 与传统的火法冶金方法相比, 它具有成本低和环境友好的优势. 然而, 生物浸出过程中矿物表面有钝化膜生成, 使得其浸出效率较低. 因此, 对微生物存在下硫化矿物的溶解和钝化机理的研究有着重要意义. 生物冶金有利于金属的提取, 但它也是一把双刃剑, 会引起一系列严重的环境问题, 例如产生酸性矿山废水等. 本文概述了一些常见硫化矿物生物浸出过程的研究以及对酸性矿山废水的环境保护情况.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG Jun, GAN Xiao-wen, ZHAO Hong-bo, HU Ming-hao, LI Kai-yun, QIN Wen-qing, QIU Guan-zhou. Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis [J]. Minerals Engineering, 2016, 98: 264–278. DOI: 10.1016/j.mineng.2016.09.008.

    Article  Google Scholar 

  2. ZHAO Hong-bo, WANG Jun, QIN Wen-qing, HU Ming-hao, ZHU Shan, QIU Guan-zhou. Electrochemical dissolution process of chalcopyrite in the presence of mesophilic microorganisms [J]. Minerals Engineering, 2015, 71: 159–169. DOI: 10.1016/j.mineng.2014.10.025.

    Article  Google Scholar 

  3. LUO Hai-lang, SHEN Li, YIN Hua-qun, LI Qian, CHEN Qi-jiong, LUO Yan-jie, LIAO Li-qin, QIU Guan-zhou, LIU Xue-duan. Comparative genomic analysis of Acidithiobacillus ferrooxidans strains using the A. ferrooxidans ATCC 23270 whole-genome oligonucleotide microarray [J]. Canadian Journal of Microbiology, 2009, 55(5): 587–598. DOI: 10.1139/W08-158.

    Article  Google Scholar 

  4. LIU Yi, YIN Hua-qun, LIANG Yi-li, SHEN Li, LIU Yao, FU Xian, BABA Ngom, ZENG Wei-min, QIU Guan-zhou, LIU Xue-duan. Changes in the composition of an acid mine drainage microbial community upon successive transfers in medium containing low-grade copper sulfide [J]. Bioresource Technology, 2011, 102(20): 9388–9394. DOI: 10.1016/j.biortech.2011.05.095.

    Article  Google Scholar 

  5. YIN Hua-qun, ZHANG Xian, LI Xiao-qi, HE Zhi-li, LIANG Yi-li, GUO Xue, HU Qi, XIAO Yun-hua, CONG Jing, MA Li-yuan, NIU Jiao-jiao, LIU Xue-duan. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans [J]. BMC Microbiology, 2014, 2014(1): 179. DOI: 10.1186/1471-2180-14-179.

    Article  Google Scholar 

  6. LIU Yi, YIN Hua-qun, ZENG Wei-min, LIANG Yi-li, LIU Yao, BABA Ngom, QIU Guan-zhou, SHEN Li, FU Xian, LIU Xue-duan. The effect of the introduction of exogenous strain Acidithiobacillus thiooxidans A01 on functional gene expression, structure and function of indigenous consortium during pyrite bioleaching [J]. Bioresource Technology, 2011, 102(17): 8092–8098. DOI: 10.1186/1471-2180-14-179.

    Article  Google Scholar 

  7. XIAO Yun-hua, LIU Xue-duan, LIANG Yi-li, NIU Jiao-jiao, ZHANG Xian, MA Li-yuan, HAO Xiao-dong, GU Ya-bing, YIN Hua-qun. Insights into functional genes and taxonomical/phylogenetic diversity of microbial communities in biological heap leaching system and their correlation with functions [J]. Applied Microbiology and Biotechnology, 2016, 100(22): 9745–9756. DOI: 10.1007/s00253-016-7819-7.

    Article  Google Scholar 

  8. XIAO Yun-hua, LIU Xue-duan, MA Li-yuan, LIANG Yi-li, NIU Jiao-jiao, GU Ya-bing, ZHANG Xian, HAO Xiao-dong, DONG Wei-ling, SHE Si-yuan, YIN Hua-qun. Microbial communities from different subsystems in biological heap leaching system play different roles in iron and sulfur metabolisms [J]. Applied Microbiology and Biotechnology, 2016, 100(15): 6871–6880. DOI: 10.1007/s00253-016-7537-1.

    Article  Google Scholar 

  9. ZHANG Xian, NIU Jiao-jiao, LIANG Yi-li, LIU Xue-duan, YIN Hua-qun. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap [J]. BMC Genetics, 2016, 2016(8): 21. DOI: 10.1186/s12863-016-0330-4.

    Article  Google Scholar 

  10. MA Li-yuan, WANG Xing-jie, FENG Xue, LIANG Yi-li, XIAO Yun-hua, HAO Xiao-dong, YIN Hua-qun, LIU Hong-wei, LIU Xue-duan. Co-culture microorganisms with different initial proportions reveal the mechanism of chalcopyrite bioleaching coupling with microbial community succession [J]. Bioresource Technology, 2017, 223: 121–130. DOI: 10.1016/j.biortech.2016.10.056.

    Article  Google Scholar 

  11. MA Li-yuan, WANG Hong-mei, WU Jiang-jun, WANG Yu-guang, ZHANG Du, LIU Xue-duan. Metatranscriptomics reveals microbial adaptation and resistance to extreme environment coupling with bioleaching performance [J]. Bioresource Technology, 2019, 280: 9–17. DOI: 10.1016/j.biortech.2019.01.117.

    Article  Google Scholar 

  12. ZHAO Hong-bo, WANG Jun, GAN Xiao-wen, HU Ming-hao, ZHANG Er-xing, QIN Wen-qing, QIU Guan-zhou. Cooperative bioleaching of chalcopyrite and silver-bearing tailing by mixed moderately thermophilic culture: An emphasis on the chalcopyrite dissolution with XPS and electrochemical analysis [J]. Minerals Engineering, 2015, 81: 29–39. DOI: 10.1016/j.mineng.2015.07.015.

    Article  Google Scholar 

  13. ZHAO Hong-bo, GAN Xiao-wen, WANG Jun, TAO Lang, QIN Wen-qing, QIU Guan-zhou. Stepwise bioleaching of Cu-Zn mixed ores with comprehensive utilization of silver-bearing solid waste through a new technique process [J]. Hydrometallurgy, 2017, 171: 374–386. DOI: 10.1016/j.hydromet.2017.06.002.

    Article  Google Scholar 

  14. WANG Jun, LIAO Rui, TAO Lang, ZHAO Hong-bo, ZHAI Rui, QIN Wen-qing, QIU Guan-zhou. A comprehensive utilization of silver-bearing solid wastes in chalcopyrite bioleaching [J]. Hydrometallurgy, 2017, 169: 152–157. DOI: 10.1016/j.hydromet.2017.01.006.

    Article  Google Scholar 

  15. FANG Chao-jun, YU Shi-chao, WANG Xing-xing, ZHAO Hong-bo, QIN Weng-qing, QIU Guan-zhou, WANG Jun, Synchrotron radiation XRD investigation of the fine phase transformation during synthetic chalcocite acidic ferric sulfate leaching [J]. Minerals, 2018, 2018(10): 461. DOI: 10.3390/min8100461.

    Article  Google Scholar 

  16. NIU Xiao-peng, RUAN Ren-man, TAN Qiao-yi, JIA Yan, SUN He-yun. Study on the second stage of chalcocite leaching in column with redox potential control and its implications [J]. Hydrometallurgy, 2015, 155: 141–52. DOI: 10.1016/j.hydromet.2015.04.022.

    Article  Google Scholar 

  17. RUAN Ren-man, ZOU Gang, ZHONG Shui-ping, WU Zeng-ling, CHAN B, WANG Dian-zuo. Why Zijinshan copper bioheapleaching plant works efficiently at low microbial activity-Study on leaching kinetics of copper sulfides and its implications [J]. Minerals Engineering, 2013, 48: 36–43. DOI: 10.1016/j.mineng.2013.01.002.

    Article  Google Scholar 

  18. LEE J, ACAR S, DOERR D L, BRIERLEY J A. Comparative bioleaching and mineralogy of composited sulfide ores containing enargite, covellite and chalcocite by mesophilic and thermophilic microorganisms [J]. Hydrometallurgy, 2011, 105(3, 4): 213–221. DOI: 10.1016/j.hydromet.2010.10.001.

    Article  Google Scholar 

  19. SASAKI K, NAKAMUTA Y, HIRAJIMA T, TUOVINEN O H. Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans [J]. Hydrometallurgy, 2009, 95(1, 2): 153–158. DOI: 10.1016/j.hydromet.2008.05.009.

    Article  Google Scholar 

  20. REYNOLDS D C, LEIES G, ANTES L L, MARBURGER R E. Photovoltaic effect in cadmium sulfide [J]. Physical Review, 1954, 96(2): 533–534. DOI: 10.1103/PhysRev. 96.533.

    Article  Google Scholar 

  21. ZHAO Yi-xin, PAN Hong-cheng, LOU Yong-bing, QIU Xiao-feng, ZHU Jun-jie, BURDA C. Plasmonic Cu2-xS Nanocrystals: Optical and structural properties of copper-deficient copper(I) sulfides [J]. Journal of the American Chemical Society, 2009, 131(12): 4253–4261. DOI: 10.1021/ja805655b.

    Article  Google Scholar 

  22. WU Biao, YANG Xin-long, WEN Jian-kang, WANG Dian-zuo. Semiconductor-microbial mechanism of selective dissolution of chalcocite in bioleaching [J]. ACS Omega, 2019, 4182(19): 18279–18288. DOI: 10.1021/acsomega. 9b02294.

    Article  Google Scholar 

  23. BEVILAQUA D, GARCIA O Jr, TUOVINEN O H. Oxidative dissolution of bornite by Acidithiobacillus ferrooxidans [J]. Process Biochemistry, 2010, 45: 101–106. DOI: 10.1016/j.procbio.2009.08.013.

    Article  Google Scholar 

  24. ZHAO Hong-bo, WANG Jun, HU Ming-hao, QIN Wen-qing, ZHANG Yan-sheng, QIU Guan-zhou. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans [J]. Bioresource Technology, 2013, 149: 71–76. DOI: 10.1016/j.biortech.2013.09.035.

    Article  Google Scholar 

  25. WANG Xing-xing, LIAO Rui, ZHAO Hong-bo, HONG Mao-xin, HUANG Xiao-tao, PENG Hong, WEN Wen, QIN Wen-qing, QIU Guan-zhou, HUANG Cao-ming, WANG Jun. Synergetic effect of pyrite on strengthening bornite bioleaching by Leptospirillum ferriphilum [J]. Hydrometallurgy, 2018, 176: 9–16. DOI: 10.1016/ j.hydromet.2017.12.003.

    Article  Google Scholar 

  26. CORKHILL C L, WINCOTT P L, LLOYD J R, VAUGHAN D J. The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans [J]. Geochimica et Cosmochimica Acta, 2008, 72: 5616–5633. DOI: 10.1016/j.gca.2008.09.008.

    Article  Google Scholar 

  27. DAVE S R, GUPTA K H, TIPRE D R. Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents [J]. Bioresource Technology, 2008, 99: 7514–7520, DOI: 10.1016/j.biortech.2008.02.019.

    Article  Google Scholar 

  28. KOMNITSAS K, XENIDIS A, ADAM K. Oxidation of pyrite and arsenopyrite in sulphidic spoils in lavrion [J]. Minerals Engineering, 1995, 8: 1443–1454. DOI: 10.1016/ j.electacta.2018.01.043.

    Article  Google Scholar 

  29. DENG Sha, GU Guo-hua, XU Bao-ke, WU Bi-chao. Surface characterization of arsenopyrite during chemical and biological oxidation [J]. Science of the Total Environment, 2018, 626: 349–356. DOI: 10.1016/j.scitotenv.2018.01.099.

    Article  Google Scholar 

  30. DENG Sha, GU Guo-hua, HE Guo-shuai, LI Li-juan. Catalytic effect of pyrite on the leaching of arsenopyrite in sulfuric acid and acid culture medium [J]. Electrochimica Acta, 2018, 263: 8–16. DOI: 10.1016/j.electacta.2018.01. 043.

    Article  Google Scholar 

  31. YANG Bao-jun, ZHAO Chun-xiao, LUO Wen, LIAO Rui, GAN Min, WANG Jun, LIU Xue-duan, QIU Guan-zhou. Catalytic effect of silver on copper release from chalcopyrite mediated by Acidithiobacillus ferrooxidans [J]. Journal of Hazardous Materials, 2020, 392: 122290. DOI: 10.1016/j.jhazmat.2020.122290.

    Article  Google Scholar 

  32. YANG Bao-jun, LIN Mo, FANG Jing-hua, ZHANG Rui-yong, LUO Wen, WANG Xing-xing, LIAO Rui, WU Bai-qiang, WANG Jun, GAN Min, LIU Bin, ZHANG Yi, LIU Xue-duan, QIN Wen-qing, QIU Guan-zhou. Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans [J]. Science of the Total Environment, 2020, 698: 134175. DOI: 10.1016/j.scitotenv.2019.134175.

    Article  Google Scholar 

  33. RINCHEVAL M, COHEN D R, HEMMINGS F A. Biogeochemical mapping of metal contamination from mine tailings using field-portable XRF [J]. Science of the Total Environment, 2019, 662: 404–413. DOI: 10.1016/j.scitotenv.2019.01.235.

    Article  Google Scholar 

  34. LIU Qi-yuan, CHEN Bing-hui, HADERLEIN S, GOPALAKRISHNANA G, ZHOU Yong-zhang. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China [J]. Ecotoxicology and Environmental Safety, 2018, 155: 50–58. DOI: 10.1016/j.ecoenv.2018.02.017.

    Article  Google Scholar 

  35. PANDA S, BISWAL A, MISHRA S, PANDA P K, PRADHAN N, MOHAPATRA U, SUKLA L B, MISHRA B K, AKCIL A. Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite: A new concept of biohydrometallurgy [J]. Hydrometallurgy, 2015, 153: 98–105. DOI: 10.1016/ j.hydromet.2015.02.006.dt

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang  (王军).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, R., Yu, Sc., Wu, Bq. et al. Sulfide mineral bioleaching: Understanding of microbe-chemistry assisted hydrometallurgy technology and acid mine drainage environment protection. J. Cent. South Univ. 27, 1367–1372 (2020). https://doi.org/10.1007/s11771-020-4372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4372-4

Key words

关键词

Navigation