Skip to main content
Log in

Lateral-torsional buckling of box beam with corrugated steel webs

波纹钢腹板箱形梁的侧扭屈曲分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Corrugated steel web is folded along the longitudinal direction and has the mechanical properties such as axial compression stiffness corrugation effect, shear modulus corrugation effect, similar to that of an accordion. In order to study the lateral-torsional buckling of box beams with corrugated steel webs (BBCSW) under the action of bending moment load, the neutral equilibrium equation of BBCSW under the action of bending moment load is derived through the stationary value theory of total potential energy and further, along with taking Kollbrunner-Hajdin correction method and the mechanical properties of the corrugated web into consideration. The analytical calculation formula of lateral-torsional buckling critical bending moment of BBCSW is then obtained. The lateral-torsional buckling critical bending moment of 96 BBCSW test specimens with different geometry dimensions are then calculated using both the analytical calculation method and ANSYS finite element method. The results show that the analytical calculation results agree well with the numerical calculation results using ANSYS, thus proving the accuracy of the analytical calculation method and model simplification hypothesis proposed in this paper. Also, compared with the box beams with flat steel webs (BBFSW) with the same geometry dimensions as BBCSW, within the common range of web space-depth ratio and web span-depth ratio, BBCSW’s lateral-torsional buckling critical bending moment is larger than that of BBFSW. Moreover, the advantages of BBCSW’s stability are even more significant with the increase of web space-depth ratio and web depth-thickness ratio.

摘要

波纹钢腹板沿纵向呈褶皱状, 具有轴压刚度波折效应及剪切模量波折效应等力学特性。为研究 弯矩荷载作用下波纹钢腹板箱形梁(BBCSW)的侧扭屈曲, 在考虑Kollbrunner-Hajdin 修正方法及波纹 钢腹板力学特性基础上, 利用势能驻值原理推导出BBCSW 在弯矩荷载作用下的中性平衡方程, 并进 一步获得BBCSW 屈曲临界弯矩解析计算公式。利用本文提出的解析计算方法及ANSYS 有限元方法 对96 个不同截面几何尺寸及计算长度的BBCSW 模型的临界屈曲弯矩进行计算。结果表明: 本文解 析计算结果与ANSYS 有限元数值计算结果吻合良好, 论证了本文解析计算方法及模型简化假设的合 理性; BBCSW 与普通钢腹板箱形梁(BBFSW)在同等几何尺寸的情况下, BBCSW 可取更小的腹板厚 度而无需加劲肋, 从而降低工程造价。在腹板距高比和腹板跨高比的共同范围内, BBCSW 侧扭屈曲 临界弯矩大于BBFSW, 而且, 随着腹板距高比和腹板跨高比的增加, BBCSW 的稳定性优势更加显 著。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ROSIGNOLI M. Prestressed concrete box girder bridges with folded steel plate webs [J]. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 1999, 134(1): 77–85. https://trid.trb.org/view/499609.

    Google Scholar 

  2. SAYED-AHMED E Y. Behaviour of steel and (or) composite girders with corrugated steel webs [J]. Canadian Journal of Civil Engineering, 2001, 36(2): 656–672. DOI: https://doi.org/10.1139/cjce-28-4-656.

    Article  Google Scholar 

  3. EL METWALLY A, LOOV R E. Corrugated steel webs for prestressed concrete girders [J]. Materials and Structures, 2003, 36(2): 127–134. DOI: https://doi.org/10.1007/BF02479526.

    Article  Google Scholar 

  4. JIANG Rui-juan, KWONG A F T, XIAO Y. Prestressed concrete girder bridges with corrugated steel webs [J]. Journal of Structural Engineering, 2014, 141(2): 4014108. DOI: https://doi.org/10.4028/www.scientific.net/amm.178-181.2418.

    Article  Google Scholar 

  5. DRIVER R G, ABBAS H H, SAUSE R. Shear behavior of corrugated web bridge girders [J]. Journal of Structural Engineering, 2006, 132(2): 195–203. DOI: https://doi.org/10.1061/(asce)0733-9445(2006)132:2(195).

    Article  Google Scholar 

  6. DENAN F, OSMAN M H, SAAD S. The study of lateral torsional buckling behavior of beam with trapezoid web steel section by experimental and finite element analysis [J]. International Journal of Research and Reviews in Applied Sciences, 2010, 3(2): 232–240. DOI: https://doi.org/10.1016/j.jneuroim.2010.01.006.

    Google Scholar 

  7. LINDNER J. Lateral torsional buckling of beams with trapezoidally corrugated webs [C]// Proceedings of the 4th International Colloquium on Stability of Steel Structures. Budapest, Hungary, 1990: 305–310.

  8. MOON J H, YI J W, CHOI B H, LEE H E. Evaluation of lateral-torsional buckling strength of I-girder with corrugated web under uniform bending [J]. Journal of Korean Society of Steel Construction, 2007, 19(5): 463–472. http://ocean.kisti.re.kr/downfile/volume/kssc1/GGJHBP/2007/v19n5/GGJHBP_2007_v19n5_463.

    Google Scholar 

  9. MOON J, YI J W, CHOI B H, LEE H E. Lateral-torsional buckling of I-girder with corrugated webs under uniform bending [J]. Thin-Walled Structures, 2009, 47(1): 21–30. DOI: https://doi.org/10.1016/j.tws.2008.04.005.

    Article  Google Scholar 

  10. MOON J, LIM N H, LEE H E. Lateral-torsional buckling strength of I-girder with corrugated steel webs under linear moment gradient [J]. Journal of the Korean Society of Civil Engineers, 2012, 32(3A). DOI: https://doi.org/10.1016/j.tws.2008.04.005.

    Google Scholar 

  11. SAYED-AHMED E Y. Lateral torsion-flexure buckling of corrugated web steel girders [J]. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2005, 158(1): 53–69. DOI: https://doi.org/10.1680/stbu.158.1.53.58529.

    Article  Google Scholar 

  12. IBRAHIM S A. Comparative study on lateral torsional buckling of tubular plate girders using different web systems [C]// Elerenth International Colloquium on Structural and Geotechincal Engineering Icsge, Cairo-Egypt: 2005.

  13. IBRAHIM S A. Lateral torsional buckling strength of unsymmetrical plate girders with corrugated webs [J]. Engineering Structures, 2014, 81: 123–134. DOI: https://doi.org/10.1016/j.engstruct.2014.09.040.

    Article  Google Scholar 

  14. LIM N H, PARK N H, KANG Y J, SUNG I H. Elastic buckling of I-beams under linear moment gradient [J]. International Journal of Solids and Structures, 2003, 40(21): 5635–5647. DOI: https://doi.org/10.1016/S0020-7683(03)00330-5.

    Article  MATH  Google Scholar 

  15. PIMENTA R J, QUEIROZ G, DINIZ S M C. Reliability-based design recommendations for sinusoidal web beams subjected to lateral-torsional buckling [J]. Engineering Structures, 2015, 84: 195–206. DOI: https://doi.org/10.1016/j.engstruct.2014.11.026.

    Article  Google Scholar 

  16. KAZEMI NIA KORRANI H. Lateral bracing of I-girder with corrugated webs under uniform bending [J]. Journal of Constructional Steel Research, 2010, 66(12): 1502–1509. DOI: https://doi.org/10.1016/j.jcsr.2010.06.003.

    Article  Google Scholar 

  17. TARAS A, GREINER R. Development of consistent buckling curves for torsional and lateral-torsional buckling [J]. Steel Construction, 2008, 1(1): 42–50. DOI: https://doi.org/10.1002/stco.200890005.

    Article  Google Scholar 

  18. DE OLIVEIRA J P S, CALENZANI A F G, FAKURY R H, FERREIRA W G. Elastic critical moment of continuous composite beams with a sinusoidal-web steel profile for lateral-torsional buckling [J]. Engineering Structures, 2016, 113: 121–132. DOI: https://doi.org/10.1016/j.engstruct.2016.01.021.

    Article  Google Scholar 

  19. NGUYEN N D, HAN S R, KIM J H, KIM S N, KANG Y J. Moment modification factors of I-girder with trapezoidal web corrugations under moment gradient [J]. Thin-Walled structures, 2012, 57: 1–12. DOI: https://doi.org/10.1016/j.tws.2012.03.016.

    Article  Google Scholar 

  20. NGUYEN N D, HAN S R, LEE G S, KANG Y J. Moment modification factor of I-girder with trapezoidal web corrugations considering concentrated load height effects [J]. Journal of Constructional Steel Research, 2011, 67(11): 1773–1787. DOI: https://doi.org/10.1016/j.jcsr.2011.05.002.

    Article  Google Scholar 

  21. NGUYEN N D, KIM S N, HAN S R, KANG Y J. Elastic lateral-torsional buckling strength of I-girder with trapezoidal web corrugations using a new warping constant under uniform moment [J]. Engineering Structures, 2010, 32(8): 2157–2165. DOI: https://doi.org/10.1016/j.engstruct.2010.03.018.

    Article  Google Scholar 

  22. NGUYEN N D, NGUYEN-VAN H, HAN S Y, CHOI J H, KANG Y. Elastic lateral-torsional buckling of tapered I-girder with corrugated webs [J]. International Journal of Steel Structures, 2013, 13(1): 71–79. DOI: https://doi.org/10.1007/s13296-013-1007-8.

    Article  Google Scholar 

  23. ZHONG H, LIU Z, QIN H, LIU Y. Static analysis of thin-walled space frame structures with arbitrary closed cross-sections using transfer matrix method [J]. Thin-Walled Structures, 2018, 123: 255–269. DOI: https://doi.org/10.1016/j.tws.2017.11.018.

    Article  Google Scholar 

  24. NIE Jian-guo. Steel-concrete composite beam structural bridge [M]. Beijing: China Communication Press, 2011. (in Chinese)

    Google Scholar 

  25. HUANG Ling, HIKOSAKA H, KOMINE K. Simulation of accordion effect in corrugated steel web with concrete flanges [J]. Computers and Structures, 2004, 82(23): 2061–2069. DOI: https://doi.org/10.1016/j.compstruc.2003.07.010.

    Article  Google Scholar 

  26. HE Jun, LIU Yu-qing, CHEN Ai-rong. Bending behavior of concrete-encased composite I-girder with corrugated steel web [J]. Thin-Walled Structures, 2014, 74: 70–84. DOI: https://doi.org/10.1016/j.tws.2013.08.003.

    Article  Google Scholar 

  27. DRIVER R G, ABBAS H H, SAUSE R. Shear behavior of corrugated web bridge girders [J]. Journal of Structural Engineering, 2006, 132(2): 195–203. DOI: https://doi.org/10.1061/(asce)0733-9445(2006)132:2(195).

    Article  Google Scholar 

  28. JOHNSON R P, CAFOLLA J, BERNARD C. Corrugated webs in plate girders for bridges [J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 1997, 122(2): 157–164. DOI: https://doi.org/10.1680/istbu.1997.29305.

    Article  Google Scholar 

  29. SAMANTA A, MUKHOPADHYAY M. Finite element static and dynamic analyses of folded plates [J]. Engineering Structures, 1990, 21(3): 277–287. DOI: https://doi.org/10.1016/s0141-0296(97)90172-3.

    Article  Google Scholar 

  30. ZHOU Wang-bao, JIANG Li-zhong. Distortional buckling of cold-formed lipped channel columns subjected to axial compression [J]. Steel and Composite Structures, 2017, 23(3): 331–338. DOI: https://doi.org/10.12989/scs.2017.23.3.331.

    Article  Google Scholar 

  31. ZHOU Wang-bao, LI Shu-jin, HUANG Zhi, JIANG Li-zhong. Distortional buckling of I-steel concrete composite beams in negative moment area [J]. Steel and Composite Structures, 2016, 20(1): 57–70. DOI: https://doi.org/10.12989/scs.2016.20.1.057.

    Article  Google Scholar 

  32. JIANG Li-zhong, FENG Yu-lin, ZHOU Wang-bao, HE Bin-bin. Analysis on natural vibration characteristics of steel-concrete composite truss beam [J]. Steel and Composite Structures, 2018, 26(1): 79–87. DOI: https://doi.org/10.12989/scs.2018.26.1.079.

    Google Scholar 

  33. ZHANG Zhong, ZHOU Wen-ling, ZHOU Ding, XU Xiu-li. Elasticity solution of laminated beams with temperature dependent material properties under a combination of uniform thermo-load and mechanical loads [J]. Journal of Central South University, 2018, 25(10): 2537–2549. DOI: https://doi.org/10.1007/s11771-018-3934-1.

    Article  Google Scholar 

  34. YU Yu-lin, YIN Shi-ping, NA Ming-wang. Bending performance of TRC-strengthened RC beams with secondary load under chloride erosion [J]. Journal of Central South University, 2019, 26(1): 196–206. DOI: https://doi.org/10.1007/s11771-019-3993-y.

    Article  Google Scholar 

  35. GB50017-2003. Steel structures design code [S]. Beijing: China Planning Press, 2003. (in Chinese)

    Google Scholar 

  36. GB50011-2010. Code for seismic design of building [S]. Beijing: China Planning Press, 2010. (in Chinese)

    Google Scholar 

  37. CHEN S. Steel structure-Building steel structure design [M]. Beijing: China Building Industry Press, 2014. (in Chinese)

    Google Scholar 

  38. SHEN P. Design of high rise building [M]. Beijing: China Building Industry Press, 2011. (in Chinese)

    Google Scholar 

  39. NIE Jian-guo, FAN Jian-sheng, CAI C S. Stiffness and deflection of steel-concrete composite beams under negative bending [J]. Journal of Structural Engineering, 2004, 130(11): 1842–1851. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1842).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang-bao Zhou  (周旺保).

Additional information

Foundation item

Projects(51408449, 51778630) supported by the National Natural Science Foundation of China; Project(2018zzts189) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Yl., Jiang, Lz., Zhou, Wb. et al. Lateral-torsional buckling of box beam with corrugated steel webs. J. Cent. South Univ. 26, 1946–1957 (2019). https://doi.org/10.1007/s11771-019-4122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4122-0

Key words

关键词

Navigation