Skip to main content
Log in

Influence of CsNO3 as electrolyte additive on electrochemical property of lithium anode in rechargeable battery

电解液添加剂CsNO3 对锂金属负极电化学性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Lithium metal is one of the most promising anode materials for rechargeable battery with high energy density, but its practical use is still hindered by two main problems, namely, lithium dendrite growth and low Coulombic efficiency. To address the issues, cesium nitrate (CsNO3) is selected as the additive to modify the electrolyte for lithium secondary battery. Here we report electrochemical performance of lithium secondary battery with different concentration of CsNO3 as electrolyte additive. The study result demonstrates that Coulombic efficiency of Li—Cu cells and the lifetime of symmetric lithium cells contained CsNO3 additive are improved greatly. Li—Cu cell with 0.05 mol/L CsNO3 and 0.15 mol/L LiNO3 as electrolyte additive presents the best electrochemical performance, having the highest Coulombic efficiency of around 97% and the lowest interfacial resistance. With increasing the concentration of CsNO3 as electrolyte additive, the electrochemical performance of cells becomes poor. Meanwhile, the morphology of lithium deposited films with CsNO3-modified electrolyte become smoother and more uniform compared with the basic electrolyte.

摘要

锂金属因具有高理论能量密度而成为理想的电池负极材料之一,但其在实际应用过程中主要存 在两个问题:锂枝晶的生长和低库伦效率。为解决这一问题,硝酸铯(CsNO3)被选为添加剂加入电 池电解液中,研究含不同浓度CsNO3 的电解液对锂二次电池电化学性能的影响。研究结果表明,电解 液中添加CsNO3 后Li—Cu 电池的库伦效率得到显著提高,循环寿命得到延长。当电解液中含0.05 mol/L CsNO3 和0.15 mol/L LiNO3 时,Li—Cu 电池具有最佳的电化学性能,库伦效率高达97%,并具有最低 的界面阻抗。随着电解液中CsNO3 浓度的提高,电池的电化学性能逐渐下降。此外,锂的沉积形貌在 含CsNO3 电解液中比在无添加剂电解液中更为圆润、均匀。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. QIAN Jiang-feng, XU Wu, BHATTACHARYA P, ENGELHARD M, HENDERSON W A, ZHANG Yao-hui, ZHANG Ji-guang. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive [J]. Nano Energy, 2015, 15: 135–144.

    Article  Google Scholar 

  2. WANG Dong, ZHANG Wei, ZHENG Wei-tao, CUI Xiao-qiang, ROJO T, ZHANG Qiang. Towards high-safe lithium metal anodes: Suppressing lithium dendrites via tuning surface energy [J]. Advanced Science, 2017, 4(1): 1600168.

    Article  Google Scholar 

  3. CHENG Xin-bing, ZHANG Rui, ZHAO Chen-zi, WEI Fei, ZHANG Ji-guang, ZHANG Qiang. A review of solid electrolyte interphases on lithium metal anode [J]. Advanced Science, 2016, 3(3): 1500213.

    Article  Google Scholar 

  4. SHUAI Yi, LIN Hua, CHEN Kang-hua, CHEN Song-yi, HE Xuan, GE Ke, LI Na, GAN Fang-yu. The effects of carbon-modified electrode on stability of lithium metal deposition with high areal capacity and high Coulombic efficiency [J]. Materials Letters, 2017, 209: 71–74.

    Article  Google Scholar 

  5. CHEN Xin-bing, HOU Ting-zheng, ZHANG Rui, PENG Hong-jie, ZHAO Chen-zi, HUANG Jia-qi, ZHANG Qiang. Dendrite-free lithium deposition induced by uniformly distributed lithium-ions for efficient lithium metal batteries [J]. Advanced Materials, 2016, 28(15): 2888–2895.

    Article  Google Scholar 

  6. GUO Jing, WEN Zhao-yin, WU Mei-fen, JIN Jun, LIU Yu. Vinylene carbonate-LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode [J]. Electrochemistry Communications, 2015, 51: 59–63.

    Article  Google Scholar 

  7. LIU Sheng, LI Guo-ran, GAO Xue-ping. Lanthanum nitrate as electrolyte additive to stabilize the surface morphology of lithium anode for lithium-sulfur battery [J]. Acs Applied Materials and Interfaces, 2016, 8(12): 7783–7789.

    Article  Google Scholar 

  8. YOON S, LEE J, KIM S O, SOHN H J. Enhanced cyclability and surface characteristics of lithium batteries by Li–Mg co-deposition and addition of HF acid in electrolyte [J]. Electrochimica Acta, 2008, 53(5): 2501–2506.

    Article  Google Scholar 

  9. ZHANG S S. Role of LiNO3 in rechargeable lithium/sulfur battery [J]. Electrochimica Acta, 2012, 70(6): 344–348.

    Article  Google Scholar 

  10. CHOUDHURY S, ARCHER L A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities [J]. Advanced Electronic Materials, 2016, 2(2): 1500246.

    Article  Google Scholar 

  11. STARK J K, DING Y, KOHL P A. Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery [J]. Journal of the Electrochemical Society, 2011, 158(10): A1100–A1105.

    Article  Google Scholar 

  12. KOMABA S, ITABASHI T, KAPLAN B, GROULT H, KUMAGAI N. Enhancement of Li-ion battery performance of graphite anode by sodium ion as an electrolyte additive [J]. Electrochemistry Communications, 2003, 5(11): 962–966.

    Article  Google Scholar 

  13. ISHIKAWA M, MORITA M, MATSUDA Y. In situ scanning vibrating electrode technique for lithium metal anodes [J]. Journal of Power Sources, 1997, 68(2): 501–505.

    Article  Google Scholar 

  14. MATSUDA Y. Behavior of lithium/electrolyte interface in organic solutions [J]. Journal of Power Sources, 1993, 43(1–3): 1–7.

    Article  Google Scholar 

  15. XU Wu, HU Jian-zhi, ENGELHARD M H, TOWNE S A, HARDY J S, XIA Jie, FENG Ju, HU M Y, ZHANG Jian, DING Fei, GROSS M E, ZHANG Ji-guang. The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries [J]. Journal of Power Sources, 2012, 215: 240–247.

    Article  Google Scholar 

  16. KOMABA S, KAPLAN B, OHTSUKA T, KATAOKA Y, KUMAGAIL N, GROULT H. Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries [J]. Journal of Power Sources, 2003, 119(6): 378–382.

    Article  Google Scholar 

  17. LIANG Xiao, WEN Zhao-yin, LIU Yu, WU Mei-fen, JIN Jun, ZHANG Hao, WU Xiang-wei. Improved cycling performances of lithium sulfur batteries with LiNO3- modified electrolyte [J]. Journal of Power Sources, 2011, 196: 9839–9843.

    Article  Google Scholar 

  18. DING Fei, XU Wu, GRAFF G L, ZHANG Jian, SUSHKO M L, CHEN Xi-lin, SHAO Yu-yan, ENGELHARD M H, NIE Zi-min, XIAO Jie, LIU Xing-jiang, SUSHKO P V, LIU Jun, ZHANG Ji-guang. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism [J]. Journal of the American Chemical Society, 2013, 135(11): 4450–4456.

    Article  Google Scholar 

  19. DING Fei, XU Wu, CHEN Xi-lin, ZHANG Jian, SHAO Yu-yan, ENGELHARD M H, ZHANG Yao-hui, BLAKE T A, GRAFF G L, LIU Xing-jiang, ZHANG Ji-guang. Effects of cesium cations in lithium deposition via self-healing electrostatic shield mechanism [J]. Journal of Physical Chemistry C, 2014, 118(8): 4043–4049.

    Article  Google Scholar 

  20. XIONG Shi-zhao, XIE Kai, HONG Xiao-bin. Effect of LiNO3 as additive on electrochemical properties of lithium-sulfur batteries [J]. Chemical Journal of Chinese Universities, 2011, 32(11): 2645–2649. (in Chinese)

    Google Scholar 

  21. BARGHAMADI M, BEST A S, HOLLENKAMP A F, MAHON P, MUSAMEH M, RÜTHER T. Optimising the concentration of LiNO3 additive in C4mpyr-TFSI electrolyte-based Li-S battery [J]. Electrochimica Acta, 2016, 222: 257–263.

    Article  Google Scholar 

  22. ZHANG S S. A new finding on the role of LiNO3 in lithium-sulfur battery [J]. Journal of Power Sources, 2016, 322: 99–105.

    Article  Google Scholar 

  23. ZHANG S S, READ J A. A new direction for the performance improvement of rechargeable lithium/sulfur batteries [J]. Journal of Power Sources, 2012, 200(1):77–82.

    Article  Google Scholar 

  24. ZHANG An-yi, FANG Xin, SHEN Chen-fei, LIU Yi-hang, ZHOU Chong-wu. A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life [J]. Nano Research, 2016, 9(11): 3428–3436.

    Article  Google Scholar 

  25. JIA Wei-shang, FAN Cong, WANG Li-ping, WANG Qing-ji, ZHAO An-jun, LI Jing-ze. Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery [J]. Acs Applied Materials and Interfaces, 2016, 8: 15399–15405.

    Article  Google Scholar 

  26. ZHENG Guang-yuan, LEE S W, LIANG Zheng, LEE H W, YAN Kai, YAO Hong-bin, WANG Hao-tian, LI Wei-yang, CHU S, CUI Yi. Interconnected hollow carbon nanospheres for stable lithium metal anodes [J]. Nature Nanotechnology, 2014, 9(8): 618–623.

    Article  Google Scholar 

  27. LUO Wei, ZHOU Li-hui, FU Kun, YANG Zhi, WAN Jia-yu, MANNO M, YAO Yong-gang, ZHU Hong-li, YANG Bao, HU Liang-bing. A thermally conductive separator for stable Li metal anodes [J]. Nano Letters, 2015, 15: 6149–6154.

    Article  Google Scholar 

  28. QIAN Jiang-feng, HENDERSON W A, XU Wu, BHATTACHARYA P, ENGELHARD M, BORODIN O, ZHANG Ji-guang. High rate and stable cycling of lithium metal anode [J]. Nature Communications, 2015, 6: 6362.

    Article  Google Scholar 

  29. AURBACH D, GAMOLSKY K, MARKOVSKY B, GOFER Y, SCHMIDT M, HEIDER U. On the use of vinylene carbonate(VC) as an additive to electrolyte solutions for Li-ion batteries [J]. Electrochimica Acta, 2002, 47(9): 1423–1439.

    Article  Google Scholar 

  30. ZHOU Hong-ming, GENG Wen-jun, LI Jian. LiPF6 and lithium difluoro(oxalate)borate/ethylene carbonate+dimethyl carbonate+ethy(methyl)carbonate electrolyte for LiNi0.5Mn1.5O4 cathode [J]. Journal of Central South University, 2017, 24: 1013–1018.

    Article  Google Scholar 

  31. VAUGHEY J T, LIU Gao, ZHANG Ji-guang. Stabilizing the surface of lithium metal [J]. MRS Bulletin, 2014, 39(5): 429–435.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-hua Chen  (陈康华).

Additional information

Foundation item: Project(2016YFB0300801) supported by the National Key Research and Development Program of China; Project(2012CB619502) supported by the National Basic Research Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Chen, Kh., Shuai, Y. et al. Influence of CsNO3 as electrolyte additive on electrochemical property of lithium anode in rechargeable battery. J. Cent. South Univ. 25, 719–728 (2018). https://doi.org/10.1007/s11771-018-3776-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3776-x

Keywords

关键词

Navigation