Skip to main content
Log in

Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: A particle flow code approach

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The ratio of crack initiation stress to the uniaxial compressive strength (S CI,B/S UC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength \(\left( {S_{A,S_{CI,B} } /S_{A,S_{UC,B} } } \right)\) were studied by performing numerical stress analysis on blocks having multi flaws at close spacing’s under uniaxial loading using PFC3D. The following findings are obtained: S CI,B/S UC,B has an average value of about 0.5 with a variability of ± 0.1. This range agrees quite well with the values obtained by former research. For joint inclination angle, β=90°, \(S_{A,S_{CI,B} } /S_{A,S_{UC,B} }\) is found to be around 0.48 irrespective of the value of joint continuity factor, k. No particular relation is found between \(S_{A,S_{CI,B} } /S_{A,S_{UC,B} }\) and β; however, the average \(S_{A,S_{CI,B} } /S_{A,S_{UC,B} }\) seems to slightly decrease with increasing k. The variability of \(S_{A,S_{CI,B} } /S_{A,S_{UC,B} }\) is found to increase with k. Based on the cases studied in this work, \(S_{A,S_{CI,B} } /S_{A,S_{UC,B} }\) ranges between 0.3 and 0.5. This range is quite close to the range of 0.4 to 0.6 obtained for S CI,B/S UC,B. The highest variability of ± 0.12 for \(S_{A,S_{CI,B} } /S_{A,S_{UC,B} }\) is obtained for k=0.8. For the remaining k values the variability of \(S_{A,S_{CI,B} } /S_{A,S_{UC,B} }\) can be expressed within ± 0.05. This finding is very similar to the finding obtained for the variability of S CI,B/S UC,B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DYSKIN A V, GERMANOVICH L N, USTINOV K B. A 3-D model of wing crack growth and intersection [J]. Engineering Fracture Mechanics, 1999, 63(1): 81–110.

    Article  Google Scholar 

  2. GEHLE C, KUTTER H K. Breakage and shear behavior of intermittent rock joints [J]. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(5): 687–700.

    Article  Google Scholar 

  3. HOEK E, BIENIAWSKI Z T. Brittle rock fracture propagation in rock under compression [J]. International Journal of Fracture Mechanics, 1965, 1(3): 137–155.

    Article  Google Scholar 

  4. KULATILAKE P H S W, HE W, UM J, WANG H. A physical model study of jointed rock mass strength under uniaxial compressive loading [J]. International Journal of Rock Mechanics & Rock Engineering, 1997, 34(3/4): 161–165.

    Google Scholar 

  5. YANG Y F, TANG C A, XIA K W. Study on crack curving and branching mechanism in quasi-brittle materials under dynamic biaxial loading [J]. International Journal of Fracture, 2012, 177(1): 53–72.

    Article  Google Scholar 

  6. SAHOURYEH E, DYSKIN A V, GERMANOVICH L N. Crack growth under biaxial compression [J]. Engineering Fracture Mechanics, 2002, 69(18): 2187–2198.

    Article  Google Scholar 

  7. BAUD P, REUSCHLE T, CHARLEZ P. An improved wing crack model for the deformation and failure of rock in compression [J]. International Journal of Rock Mechanics Mining Sciences & Geomechanics Abstract, 1996, 33(5): 539–542.

    Article  Google Scholar 

  8. LAJTAI E Z. Brittle fracture in compression [J]. International Journal of Fracture, 1974, 10(4): 525–536.

    Article  Google Scholar 

  9. PARK C H, BOBET A. Crack coalescence in specimens with open and closed flaws: A comparison [J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(5): 819–829.

    Article  Google Scholar 

  10. LEE H, JEON S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression [J]. Internatinal Journal of Solid, and Structures, 2011, 48(6): 979–999.

    Article  MATH  MathSciNet  Google Scholar 

  11. BOBET A. The initiation of secondary cracks in compression [J]. Engineering Fracture Mechanics, 2000, 66(2): 187–219.

    Article  Google Scholar 

  12. CHEN Xin, LIAO Zhi-hong, PENG Xi. Deformability characteristics of jointed rock masses under unaixal compression [J]. International Journal of Mining Science and Technology, 2012, 22(2): 213–221.

    Article  Google Scholar 

  13. KULATILAKE P H S W, PARK J, MALAMA B. A new rock mass failure criterion for biaxial loading conditions [J], Geotecnical and Geological Engineering, 2006, 24(4): 871–888.

    Article  Google Scholar 

  14. BOBET A, EINSTEIN H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 863–888.

    Article  Google Scholar 

  15. SINGH M, RAO K S. Empirical methods to estimate the strength of jointed rock masses [J]. Engineering Geology, 2005, 77(1): 127–137.

    Article  Google Scholar 

  16. WONG R H C, CHAU K T, TANG C A, LIN P. Analysis of crack coalescence in rock-like materials containing three flaws-Part I: experimental approach [J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(7): 909–924.

    Article  Google Scholar 

  17. WONG R H C, LIN P, TANG C A, CHAU K T. Creeping damage around an opening in rock-like material containing non-persistent joints [J]. Engineering Fracture Mechanics, 2002, 69(17): 2015–2027.

    Article  Google Scholar 

  18. PRUDENCIO M, van SINT-JAN M. Strength and failure modes of rock mass models with non-persistent joints [J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(6): 890–902.

    Article  Google Scholar 

  19. van de STEEN B, VERVOORT A, NAPIER J A L. Numerical modelling of fracture initiation and propagation in biaxial tests on rock samples [J]. International Journal of Fracture, 2001, 108(2): 165–191.

    Article  Google Scholar 

  20. GHAZVINIAN A, SARFARAZI Y, SCHUBERT W, BLUMEL M. A study of the failure mechanism of planar non-persistent open joints using PFC2D [J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 677–693.

    Google Scholar 

  21. WONG R H C, EINSTEIN H H. Crack coalescence in molded gypsum and Carrara marble: Part I. macroscopic observations and interpretation [J]. Rock Mechanics and Rock Engineering, 2009, 42, 475–511.

    Article  Google Scholar 

  22. BOBET A, EINSTEIN H H. Numerical modeling of fracture coalescence in a model rock material [J]. International Journal of Fracture, 1998, 92(3): 221–252.

    Article  Google Scholar 

  23. TANG C A, LIN P, WONG R H C, CHAU K Y. Analysis of crack coalescence in rock-like materials containing three flaws-Part II: numerical approach [J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(7): 925–939.

    Article  Google Scholar 

  24. CHEN Xin, LIAO Zhi-Hong, PENG Xi. Cracking process of rock mass models under uniaxial compression [J]. Journal of Central South University, 2013, 20(6): 1661–1678.

    Article  Google Scholar 

  25. de BREMAECKER J C, FERRIS M C. Numerical models of shear fracture propagation [J]. Engineering Fracture Mechanics, 2004, 71(15): 2161–2178.

    Article  Google Scholar 

  26. SAGONG M, BOBET A. Coalescence of multiple flaws in a rock-model material in uniaxial compression [J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(2): 229–241.

    Article  Google Scholar 

  27. CHAN H C M, LI V, EINSTEIN H H. A hybridized displacement discontinuity and indirect boundary element method to model fracture propagation [J]. International Journal of Fracture, 1990, 45(4): 263–282.

    Article  Google Scholar 

  28. BOBET A. A hybridized displacement discontinuity method for mixed mode I–II–II loading [J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(8): 1121–1134.

    Article  Google Scholar 

  29. TANG C A, KOU S Q. Crack propagation and coalescence in brittle materials under compression [J]. Engineering Fracture Mechanics, 1998, 61(3): 311–324.

    Article  Google Scholar 

  30. TANG C A, LIU H, LEE P K K, TSUIY, THAM L G. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part I: effect of heterogeneity [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 555–569.

    Article  Google Scholar 

  31. TANG C A, THAM L G, LEE P K K, TSUI Y, LIU H. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part II: constraint, slenderness and size effect [J]. Internation, Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 571–583.

    Article  Google Scholar 

  32. ZHANG Hou-quan, HE Yong-nian, HAN Li-jun, et al. Micro-fracturing characteristics in brittle material containing structural defects under biaxial loading [J]. Computational Materials Science, 2009, 46(3): 682–686.

    Article  Google Scholar 

  33. LIN P, WONG R H C, CHAU K T, TANG C A. Multi-crack coalescence in rock-like material under uniaxial and biaxial loading [C]// 4th International Conference on Fracture and Strength of Solids. Pohang, Korea, 2000, 183/187: 809–814.

    Google Scholar 

  34. CUNDALL P A, STRACK O D L. A discrete numerical model for granular assembles [J]. Geotechnique, 1979, 29(1): 47–65.

    Article  Google Scholar 

  35. KULATILAKE P H S W, MALAMA B, WANG J. Physical and particle flow, modeling of jointed rock block behavior under uniaxial loading [J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(5): 641–657.

    Article  Google Scholar 

  36. ZHANG Xiao-ping, WONG L N Y. Cracking process in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bonded-particle model approach [J]. Rock Mechanics and Rock Engineering, 2012, 45(5):711–737.

    Google Scholar 

  37. ZHANG Xiao-ping, WONG R H C. Crack initiation, propagation and coalescence in rock-like material containing two flaws: A numerical study based on bonded-particle, model approach [J]. Rock Mechanics and Rock Engineering, 2013, 46(5): 1001–1021.

    Article  Google Scholar 

  38. BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression [J]. Computers and Geotechnics, 2013, 49: 206–225.

    Article  Google Scholar 

  39. MARTIN C D, CHANDLER N A. The progressive fracture of Lac du Bonnet granite [J]. International Journal of Rock Mechanics and Mining Engineering, 1994, 31(6): 643–659.

    Article  Google Scholar 

  40. BRACE W F, PAULDING B W, SCHOLZ C. Dilatancy in the fracture of crystalline rocks [J]. Journal of Geophysical Research, 1966, 71(16): 3939–3953.

    Article  Google Scholar 

  41. Itasca Consulting Group. PFC3D user’s manual [R]. Minneapolis: Minnesota, USA: ICG, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen  (陈新).

Additional information

Foundation item: Project(11102224) supported by the National Natural Science Foundation of China; Project(201206370124) supported by the China Scholarship Council, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Kulatilake, P.H.S.W., Chen, X. et al. Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: A particle flow code approach. J. Cent. South Univ. 22, 638–645 (2015). https://doi.org/10.1007/s11771-015-2565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2565-z

Key words

Navigation