Skip to main content
Log in

Special considerations in the design and implementation of pediatric otoprotection trials

  • Review
  • Published:
Journal of Cancer Survivorship Aims and scope Submit manuscript

Abstract

Purpose

Cisplatin-induced hearing loss (CIHL) is a common late effect after childhood cancer treatment having profound, lifelong consequences that lower quality of life. The recent identification of intravenous sodium thiosulfate (STS) as an effective agent for preventing pediatric CIHL represents a paradigm shift that has created new opportunities for expanding STS usage and developing additional otoprotectants. The purpose of this paper is to discuss key considerations and recommendations for the design and implementation of future pediatric otoprotection trials.

Methods

An approach synthesizing published data and collective experience was used.

Results

Key issues were identified in the categories of translational research, trial designs for systemic and intratympanic agents, measurement of ototoxicity, and biostatistical challenges.

Conclusions

Future pediatric otoprotection trials should emphasize (1) deep integration of preclinical and early-phase studies; (2) an embedded or free-standing design for systemic agents based on mechanistic considerations; (3) use of suitable audiologic testing batteries for children, SIOP grading criteria, and submission of raw audiologic data for central review; and (4) novel endpoints and innovative study designs that maximize trial efficiency for limited sample sizes. Additional recommendations include routine collection of DNA specimens for assessing modifying effects of genetic susceptibility and meaningful inclusion of patient/family advocates for informing trial development.

Implications for Cancer Survivors

Changing the historical paradigm from acceptance to prevention of pediatric CIHL through expanded research with existing and emerging otoprotectants will dramatically improve quality of life for future childhood cancer survivors exposed to cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data cited in this review article are available in the public domain.

References

  1. Ghosh S. Cisplatin: the first metal based anticancer drug. Bioorg Chem. 2019;88:102925.

    Article  CAS  PubMed  Google Scholar 

  2. Brock PR, et al. Platinum-induced ototoxicity in children: a consensus review on mechanisms, predisposition, and protection, including a new International Society of Pediatric Oncology Boston ototoxicity scale. J Clin Oncol. 2012;30(19):2408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van As JW, van den Berg H, van Dalen EC. Platinum-induced hearing loss after treatment for childhood cancer. Cochrane Database Syst Rev. 2016;(8):CD010181.

  4. Moke DJ, et al. Prevalence and risk factors for cisplatin-induced hearing loss in children, adolescents, and young adults: a multi-institutional North American cohort study. Lancet Child Adolesc Health. 2021;5(4):274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Knight KR, Kraemer DF, Neuwelt EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol. 2005;23(34):8588–96.

    Article  PubMed  Google Scholar 

  6. Gurney JG, et al. Hearing loss, quality of life, and academic problems in long-term neuroblastoma survivors: a report from the Children’s Oncology Group. Pediatrics. 2007;120(5):e1229–36.

    Article  PubMed  Google Scholar 

  7. Landier W, et al. Ototoxicity in children with high-risk neuroblastoma: prevalence, risk factors, and concordance of grading scales–a report from the Children’s Oncology Group. J Clin Oncol. 2014;32(6):527–34.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brinkman TM, et al. Treatment-induced hearing loss and adult social outcomes in survivors of childhood CNS and non-CNS solid tumors: results from the St. Jude Lifetime Cohort Study Cancer. 2015;121(22):4053–61.

    CAS  PubMed  Google Scholar 

  9. Orgel E, et al. Effect of sensorineural hearing loss on neurocognitive functioning in pediatric brain tumor survivors. Pediatr Blood Cancer. 2016;63(3):527–34.

    Article  CAS  PubMed  Google Scholar 

  10. Bass JK, et al. Association of hearing impairment with neurocognition in survivors of childhood cancer. JAMA Oncol. 2020;6(9):1363–71.

    Article  PubMed  Google Scholar 

  11. Sininger YS, Grimes A, Christensen E. Auditory development in early amplified children: factors influencing auditory-based communication outcomes in children with hearing loss. Ear Hear. 2010;31(2):166–85.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Frisina RD, et al. Comprehensive audiometric analysis of hearing impairment and tinnitus after cisplatin-based chemotherapy in survivors of adult-onset cancer. J Clin Oncol. 2016;34(23):2712–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. The Voice of the Patient Hyattsville, MD2018 [updated September 13, 2018. Available from: https://www.fda.gov/media/132522/download

  14. Orgel E, et al. Assessment of provider perspectives on otoprotection research for children and adolescents: a Children’s Oncology Group Cancer Control and Supportive Care Committee survey. Pediatr Blood Cancer. 2020;67(11):e28647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mukherjea D, et al. Strategies to reduce the risk of platinum containing antineoplastic drug-induced ototoxicity. Expert Opin Drug Metab Toxicol. 2020;16(10):965–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Steyger PS. Mechanisms of aminoglycoside- and cisplatin-induced ototoxicity. Am J Audiol. 2021;30(3S):887–900.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Park MS, De Leon M, Devarajan P. Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol. 2002;13(4):858–65.

    Article  CAS  PubMed  Google Scholar 

  18. Bragado P, et al. Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis. 2007;12(9):1733–42.

    Article  CAS  PubMed  Google Scholar 

  19. Sheth S, et al. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci. 2017;11:338.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yu W, et al. Cisplatin generates oxidative stress which is accompanied by rapid shifts in central carbon metabolism. Sci Rep. 2018;8(1):4306.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guthrie OW. DNA repair proteins and telomerase reverse transcriptase in the cochlear lateral wall of cisplatin-treated rats. J Chemother. 2009;21(1):74–9.

    Article  CAS  PubMed  Google Scholar 

  23. Laurell G, et al. Effects of a single high dose of cisplatin on the melanocytes of the stria vascularis in the guinea pig. Audiol Neurootol. 2007;12(3):170–8.

    Article  CAS  PubMed  Google Scholar 

  24. Slattery EL, et al. Cisplatin exposure damages resident stem cells of the mammalian inner ear. Dev Dyn. 2014;243(10):1328–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Breglio AM, et al. Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun. 2017;8(1):1654.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yancey A, et al. Risk factors for cisplatin-associated ototoxicity in pediatric oncology patients. Pediatr Blood Cancer. 2012;59(1):144–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li Y, Womer RB, Silber JH. Predicting cisplatin ototoxicity in children: the influence of age and the cumulative dose. Eur J Cancer. 2004;40(16):2445–51.

    Article  CAS  PubMed  Google Scholar 

  28. Clemens E, et al. Genetic variation of cisplatin-induced ototoxicity in non-cranial-irradiated pediatric patients using a candidate gene approach: the International PanCareLIFE study. Pharmacogenomics J. 2020;20(2):294–305.

    Article  CAS  PubMed  Google Scholar 

  29. Drogemoller BI, et al. Pharmacogenomics of cisplatin-induced ototoxicity: successes, shortcomings, and future avenues of research. Clin Pharmacol Ther. 2019;106(2):350–9.

    Article  PubMed  Google Scholar 

  30. Meijer AJM, et al. TCERG1L allelic variation is associated with cisplatin-induced hearing loss in childhood cancer, a PanCareLIFE study. NPJ Precis Oncol. 2021;5(1):64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Langer T, et al. Usefulness of current candidate genetic markers to identify childhood cancer patients at risk for platinum-induced ototoxicity: results of the European PanCareLIFE cohort study. Eur J Cancer. 2020;138:212–24.

    Article  CAS  PubMed  Google Scholar 

  32. Lewis MJ, et al. Ototoxicity in children treated for osteosarcoma. Pediatr Blood Cancer. 2009;52(3):387–91.

    Article  PubMed  Google Scholar 

  33. Qaddoumi I, et al. Carboplatin-associated ototoxicity in children with retinoblastoma. J Clin Oncol. 2012;30(10):1034–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Parsons SK, et al. Severe ototoxicity following carboplatin-containing conditioning regimen for autologous marrow transplantation for neuroblastoma. Bone Marrow Transplant. 1998;22(7):669–74.

    Article  CAS  PubMed  Google Scholar 

  35. Walker DA, et al. Enhanced cis-platinum ototoxicity in children with brain tumours who have received simultaneous or prior cranial irradiation. Med Pediatr Oncol. 1989;17(1):48–52.

    Article  CAS  PubMed  Google Scholar 

  36. Kohn S, et al. Ototoxicity resulting from combined administration of cisplatin and gentamicin. Laryngoscope. 1997;107(3):407–8.

    Article  CAS  PubMed  Google Scholar 

  37. Lin X, et al. Experimental animal models of drug-induced sensorineural hearing loss: a narrative review. Ann Transl Med. 2021;9(17):1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Todd DW, et al. A fully automated high-throughput zebrafish behavioral ototoxicity assay. Zebrafish. 2017;14(4):331–42.

    Article  CAS  PubMed  Google Scholar 

  39. Hazlitt RA, et al. Development of second-generation CDK2 inhibitors for the prevention of cisplatin-induced hearing loss. J Med Chem. 2018;61(17):7700–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ingersoll MA, et al. BRAF inhibition protects against hearing loss in mice. Sci Adv. 2020;6(49).

  41. Teitz T, et al. Development of cell-based high-throughput chemical screens for protection against cisplatin-induced ototoxicity. Methods Mol Biol. 2016;1427:419–30.

    Article  CAS  PubMed  Google Scholar 

  42. Fernandez K, et al. An optimized, clinically relevant mouse model of cisplatin-induced ototoxicity. Hear Res. 2019;375:66–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wong HH, Halford S. Dose-limiting toxicity and maximum tolerated dose: still fit for purpose? Lancet Oncol. 2015;16(13):1287–8.

    Article  PubMed  Google Scholar 

  44. Filloon TG. Estimating the minimum therapeutically effective dose of a compound via regression modelling and percentile estimation. Stat Med. 1995;14(9–10):925–32; discussion 33.

  45. Fraisse J, et al. Optimal biological dose: a systematic review in cancer phase I clinical trials. BMC Cancer. 2021;21(1):60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Muldoon LL, et al. Delayed administration of sodium thiosulfate in animal models reduces platinum ototoxicity without reduction of antitumor activity. Clin Cancer Res. 2000;6(1):309–15.

    CAS  PubMed  Google Scholar 

  47. Muldoon LL, et al. N-acetylcysteine chemoprotection without decreased cisplatin antitumor efficacy in pediatric tumor models. J Neurooncol. 2015;121(3):433–40.

    Article  CAS  PubMed  Google Scholar 

  48. Wang X, et al. Dose-dependent sustained release of dexamethasone in inner ear cochlear fluids using a novel local delivery approach. Audiol Neurootol. 2009;14(6):393–401.

    Article  CAS  PubMed  Google Scholar 

  49. Al Shoyaib A, Archie SR, Karamyan VT. Intraperitoneal route of drug administration: should it be used in experimental animal studies? Pharm Res. 2019;37(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Harned TM, et al. Sodium thiosulfate administered six hours after cisplatin does not compromise antineuroblastoma activity. Clin Cancer Res. 2008;14(2):533–40.

    Article  CAS  PubMed  Google Scholar 

  51. Neuwelt EA, et al. Bone marrow chemoprotection without compromise of chemotherapy efficacy in a rat brain tumor model. J Pharmacol Exp Ther. 2004;309(2):594–9.

    Article  CAS  PubMed  Google Scholar 

  52. Dickey DT, et al. Protection against cisplatin-induced toxicities by N-acetylcysteine and sodium thiosulfate as assessed at the molecular, cellular, and in vivo levels. J Pharmacol Exp Ther. 2005;314(3):1052–8.

    Article  CAS  PubMed  Google Scholar 

  53. Juhn SK, Rybak LP, Prado S. Nature of blood-labyrinth barrier in experimental conditions. Ann Otol Rhinol Laryngol. 1981;90(2 Pt 1):135–41.

    Article  CAS  PubMed  Google Scholar 

  54. Gersten BK, et al. Ototoxicity and platinum uptake following cyclic administration of platinum-based chemotherapeutic agents. J Assoc Res Otolaryngol. 2020;21(4):303–21.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Viglietta V, et al. Phase 1 study to evaluate safety, tolerability and pharmacokinetics of a novel intra-tympanic administered thiosulfate to prevent cisplatin-induced hearing loss in cancer patients. Invest New Drugs. 2020;38(5):1463–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Prykhozhij SV, Caceres L, Berman JN. New developments in CRISPR/Cas-based functional genomics and their implications for research using zebrafish. Curr Gene Ther. 2017;17(4):286–300.

    CAS  PubMed  Google Scholar 

  57. Wertman JN, et al. The identification of dual protective agents against cisplatin-induced oto- and nephrotoxicity using the zebrafish model. Elife. 2020;9.

  58. Freyer DR, et al. Effects of sodium thiosulfate versus observation on development of cisplatin-induced hearing loss in children with cancer (ACCL0431): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017;18(1):63–74.

    Article  CAS  PubMed  Google Scholar 

  59. Brock PR, et al. Sodium thiosulfate for protection from cisplatin-induced hearing loss. N Engl J Med. 2018;378(25):2376–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Minasian LM, et al. Prevention of cisplatin-induced hearing loss in children: informing the design of future clinical trials. Cancer Med. 2018.

  61. Freyer DR, et al. Prevention of cisplatin-induced ototoxicity in children and adolescents with cancer: a clinical practice guideline. Lancet Child Adolesc Health. 2020;4(2):141–50.

    Article  CAS  PubMed  Google Scholar 

  62. FDA approves sodium thiosulfate to reduce the risk of ototoxicity associated with cisplatin in pediatric patients with localized, non-metastatic solid tumors. 2022 [updated September 20, 2022.

  63. Schroeder RJ 2nd, et al. Pharmacokinetics of sodium thiosulfate in Guinea pig perilymph following middle ear application. J Otol. 2018;13(2):54–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fernandez R, et al. The sustained-exposure dexamethasone formulation OTO-104 offers effective protection against cisplatin-induced hearing loss. Audiol Neurootol. 2016;21(1):22–9.

    Article  CAS  PubMed  Google Scholar 

  65. Berglin CE, et al. Prevention of cisplatin-induced hearing loss by administration of a thiosulfate-containing gel to the middle ear in a guinea pig model. Cancer Chemother Pharmacol. 2011;68(6):1547–56.

    Article  CAS  PubMed  Google Scholar 

  66. Freyer DR, et al. Interventions for cisplatin-induced hearing loss in children and adolescents with cancer. Lancet Child Adolesc Health. 2019;3(8):578–84.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Edmunds AL. Otiprio: an FDA-approved ciprofloxacin suspension gel for pediatric otitis media with effusion. P T. 2017;42(5):307–11.

    PubMed  PubMed Central  Google Scholar 

  68. Freyer DR DD, Orgel E et al. . Intratympanic injection of sustained-exposure dexamethasone thermosensitive gel (OTO-104) for prevention of cisplatin-induced hearing loss in children is feasible and safe. 2022(SIOP 2022 Annual Meeting Abstract 1172).

  69. Neuwelt EA, Brock P. Critical need for international consensus on ototoxicity assessment criteria. J Clin Oncol. 2010;28(10):1630–2.

    Article  PubMed  Google Scholar 

  70. Meijer AJM, et al. Recommendations for age-appropriate testing, timing, and frequency of audiologic monitoring during childhood cancer treatment: an International Society of Paediatric Oncology Supportive Care Consensus Report. JAMA Oncol. 2021;7(10):1550–8.

    Article  PubMed  Google Scholar 

  71. Beahan N, et al. High-frequency pure-tone audiometry in children: a test-retest reliability study relative to ototoxic criteria. Ear Hear. 2012;33(1):104–11.

    Article  PubMed  Google Scholar 

  72. Reuter W, et al. Extended high frequency audiometry in pre-school children. Audiology. 1998;37(5):285–94.

    Article  CAS  PubMed  Google Scholar 

  73. Knight KR, et al. Early changes in auditory function as a result of platinum chemotherapy: use of extended high-frequency audiometry and evoked distortion product otoacoustic emissions. J Clin Oncol. 2007;25(10):1190–5.

    Article  CAS  PubMed  Google Scholar 

  74. Abujamra AL, et al. The use of high-frequency audiometry increases the diagnosis of asymptomatic hearing loss in pediatric patients treated with cisplatin-based chemotherapy. Pediatr Blood Cancer. 2013;60(3):474–8.

    Article  CAS  PubMed  Google Scholar 

  75. Knight KR, et al. Group-wide, prospective study of ototoxicity assessment in children receiving cisplatin chemotherapy (ACCL05C1): a report from the Children’s Oncology Group. J Clin Oncol. 2017;35(4):440–5.

    Article  PubMed  Google Scholar 

  76. Guidelines for the audiologic management of individuals receiving cochleotoxic drug therapy 1994 [Available from: https://www.asha.org/policy/gl1994-00003/.

  77. Common Terminology Criteria for Adverse Events (CTCAE) 2017 [updated November 27, 2017. 5.0:[Available from: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf.

  78. Brock PR, et al. Cisplatin ototoxicity in children: a practical grading system. Med Pediatr Oncol. 1991;19(4):295–300.

    Article  CAS  PubMed  Google Scholar 

  79. Chang KW, Chinosornvatana N. Practical grading system for evaluating cisplatin ototoxicity in children. J Clin Oncol. 2010;28(10):1788–95.

    Article  CAS  PubMed  Google Scholar 

  80. King KA, Brewer CC. Clinical trials, ototoxicity grading scales and the audiologist’s role in therapeutic decision making. Int J Audiol. 2018;57(sup4):S89–98.

    Article  PubMed  Google Scholar 

  81. Schmidt CM, et al. The “Muenster classification” of high frequency hearing loss following cisplatin chemotherapy. HNO. 2007;55(4):299–306.

    Article  PubMed  Google Scholar 

  82. Gans RE, Rauterkus G, Research A. Vestibular toxicity: causes, evaluation protocols, intervention, and management. Semin Hear. 2019;40(2):144–53.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Camet ML, et al. Determining the prevalence of vestibular screening failures in pediatric cancer patients whose therapies include radiation to the head/neck and platin-based therapies: a pilot study. Pediatr Blood Cancer. 2018;65(6):e26992.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rosenberg AR. We cannot change what we cannot see: a rationale for patient-reported outcomes in pediatric oncology clinical research. J Clin Oncol. 2022;40(15):1601–3.

    Article  PubMed  Google Scholar 

  85. Katzenstein HM, et al. Minimal adjuvant chemotherapy for children with hepatoblastoma resected at diagnosis (AHEP0731): a Children’s Oncology Group, multicentre, phase 3 trial. Lancet Oncol. 2019;20(5):719–27.

    Article  PubMed  PubMed Central  Google Scholar 

  86. McCoy CE. Understanding the use of composite endpoints in clinical trials. West J Emerg Med. 2018;19(4):631–4.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kuss O, McLerran D. A note on the estimation of the multinomial logistic model with correlated responses in SAS. Comput Methods Programs Biomed. 2007;87(3):262–9.

    Article  PubMed  Google Scholar 

  88. Cousins RPC. Medicines discovery for auditory disorders: challenges for industry. J Acoust Soc Am. 2019;146(5):3652.

    Article  PubMed  Google Scholar 

Download references

Funding

Partial funding for this work is reported by EO (1K23DC014291 from NIH/NIDCD).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was conceptualized by DRF. The original draft manuscript was written by DRF with sections contributed by EO (translational considerations) and KK (measurement of ototoxicity). Critical review and editing of the manuscript was done by all authors.

Corresponding author

Correspondence to David R. Freyer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freyer, D.R., Orgel, E., Knight, K. et al. Special considerations in the design and implementation of pediatric otoprotection trials. J Cancer Surviv 17, 4–16 (2023). https://doi.org/10.1007/s11764-022-01312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11764-022-01312-x

Keywords

Navigation