Skip to main content
Log in

Focus on local: transmission line defect detection via feature refinement

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Different from the object detection which has made great progress in natural imagery, transmission line images acquired by UAVs have their own challenges in detecting defects in critical parts, such as object scale variation and small defect targets. In this paper, we construct an effective architecture, called FOLO, to improve the accuracy of defect detection in critical parts of transmission lines. To capture the critical part defect object features, a local contextual feature pyramid network (LCFPN) is proposed to refine the local contextual information and perform multi-scale learning. In LCFPN, we introduce a channel feature refinement block (CFRB) and multiple spatial feature refinement block (SFRBs) to further improve the ability of the network to focus on local features. Besides, a local adaptive feature network (LAFN) is designed, which makes it possible to locate adaptive components with defects in critical areas of different shapes. Since existing transmission line datasets have a single category, we create a new defect detection dataset containing insulators, anti-vibration hammers and bird nests, named IVB. Experimental results on IVB show that the proposed FOLO yields promising performance against other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao, Z., Qi, H., Qi, Y., Zhang, K., Zhai, Y., Zhao, W.: Detection method based on automatic visual shape clustering for pin-missing defect in transmission lines. IEEE Trans. Instrum. Meas. 69(9), 6080–6091 (2020)

    Article  Google Scholar 

  2. Tong, W., uan, J.Y., Li, B.: Application of image processing in patrol inspection of overhead transmission line by helicopter. J. Power Syst. Technol. 34(12), 204–208 (2010)

    Google Scholar 

  3. Deng, C., Wang, S., Huang, Z., Tan, Z., Liu, J.: Unmanned aerial vehicles for power line inspection: a cooperative way in platforms and communications. J. Commun. 9(9), 687–692 (2014)

    Article  Google Scholar 

  4. Liang, H., Zuo, C., Wei, W.: Detection and evaluation method of transmission line defects based on deep learning. IEEE Access 8, 38448–38458 (2020)

    Article  Google Scholar 

  5. Zhang, Y., Liang, Z., Tan, M.: Mobile robot for overhead powerline inspection-A review. J. Robot. 26(5), 467–473 (2004)

    Google Scholar 

  6. Zhang, Y., Yuan, X., Fang, Y., Chen, S.: UA V low altitude photogrammetry for power line inspection. Int. J. Geoinf. 6(1), 14 (2017)

    Google Scholar 

  7. Lin, T.-Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proc. Comput. Vis. Pattern Recognit., pp. 936–944 (2017)

  8. Singh, B., Najibi, M., Davis, L.S.: SNIPER: efficient multi-scale training. In: Proc. Neural Inf. Process. Syst., pp. 9310–9320 (2018)

  9. Najibi, M., Singh, B., Davis, L.S.: AutoFocus: efficient multi-scale inference. In: Proc. Int. Conf. Comput. Vis., pp. 9745–9755 (2019)

  10. Tang, Y., Han, J., Wei, W., Ding, J., Peng, X.: Research on part recognition and defect detection of trainsmission line in deep learning. Electron. Meas. Technol. 41(6), 60–65 (2018)

    Google Scholar 

  11. Tao, X., Zhang, D., Wang, Z., Liu, X., Zhang, H., Xu, D.: Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE Trans. Syst. Man Cybern. Syst. 50(4), 1486–1498 (2020)

    Article  Google Scholar 

  12. Wang, S., Liu, Y., Qing, Y., Wang, C., Lan, T., Yao, R.: Detection of insulator defects with improved ResNeSt and region proposal network. IEEE Access 8, 184841–184850 (2020)

    Article  Google Scholar 

  13. Hang, Z., Wu, C., Zhang, Z., Zhu, Y., Zhang, Z., Lin, H., Sun, Y ., He, T., Mueller, J., Manmatha, R., Li, M.: Resnest: split-attention networks,CoRR (2020). arXiv:2004.08955

  14. Shouguo, L., Kai, L., Yaohua, Q., Yunqi, L., Yang, S., Zhenyu, L.: Automatic detection method for small size transmission lines defect based on improved YOLOv3. In: 2020 International Conference on Communications, Information System and Computer Engineering (CISCE), pp. 78–81 (2020)

  15. Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K.: Augmentation for small object detection (2019). arXiv:1902.07296

  16. Yang, Z., et al.: Small object augmentation of urban scenes for realtime semantic segmentation. IEEE Trans. Image Process. 29, 5175–5190 (2020)

    Article  MATH  Google Scholar 

  17. Hong, S., Kang, S., Cho, D.: Patch-level augmentation for object detection in aerial images. In: Proc. Int. Conf. Comput. Vis. Workshops, pp. 127–134 (2019)

  18. Liu, J., et al.: Multi-component fusion network for small object detection in remote sensing images. IEEE Access 7, 128 339-128 352 (2019)

    Article  Google Scholar 

  19. Ren, Y., Zhu, C., Xiao, S.: Small object detection in optical remote sensing images via modified faster R-CNN. Appl. Sci. 8(5), 1–11 (2018)

    Article  Google Scholar 

  20. Lee, G., Hong, S., Cho, D.: Self-supervised feature enhancement networks for small object detection in noisy images. IEEE Signal Process. Lett. 28, 1026–1030 (2021)

    Article  Google Scholar 

  21. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y . M.: YOLOv4: optimal speed and accuracy of object detection (2020). arXiv:2004.10934

  22. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollàr, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2020)

    Article  Google Scholar 

  23. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., Berg, A.C.: Ssd: single shot multibox detector. In: ECCV (2016)

  24. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards realtime object detection with region proposal networks. In: Proc. Neural Inf. Process. Syst., vol 28, pp. 91–99 (2015)

  25. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

  26. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR (2018)

  27. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)

  28. Chen, K., Cao, Y., Loy, C.C., Lin, D., Feichtenhofer, C.: Feature pyramid grids (2020). arXiv Computer Vision and Pattern Recognition

  29. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and- excitation networks. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2019)

  30. Woo, S., Park, J., Lee, Y., So Kweon, I.: Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision, pp. 3–19 (2018)

  31. Guo, C., Fan, B., Zhang, Q., Xiang, S., Pan, C.: Augfpn: improving multi-scale feature learning for object detection. In: CVPR (2020)

  32. Cao, J., Chen, Q., Guo, J., Shi, R.: Attention-guided context feature pyramid network for object detection (2020). arXiv Computer Vision and Pattern Recognition

  33. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

  34. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2018)

    Article  Google Scholar 

  35. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid Scene Parsing Network. In: CVPR, pp. 6230–6239 (2017)

  36. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. Comput. Vis. Pattern Recognit., pp. 770–778 (2016)

  37. Dai, J. et al.: Deformable convolutional networks. In: Proc. Int. Conf. Comput. Vis. (2017)

  38. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: NIPS (2015)

  39. Girshick, R.: Fast R-CNN. In: Proc. Int. Conf. Comput. Vis., pp. 1440–1448 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longgang Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Science and Technology Development Project of Jilin Province (Grant 20190302036GX).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Dai, L., Ni, H. et al. Focus on local: transmission line defect detection via feature refinement. SIViP 17, 31–37 (2023). https://doi.org/10.1007/s11760-022-02200-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02200-8

Keywords

Navigation