Skip to main content
Log in

Ultrasound spatiotemporal despeckling via Kronecker wavelet-Fisz thresholding

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

We propose a novel framework for despeckling ultrasound image sequences while respecting the structural details. More precisely, we use thresholding in an adapted wavelet domain that jointly takes into account for the non-Gaussian statistics of the noise and the differences in spatial and temporal regularities. The spatiotemporal wavelet is obtained via the Kronecker product of two sparsifying wavelet bases acting, respectively, on the spatial and temporal domains. Besides enabling a structured sparse representation of the time–space plan, it also makes it possible to perform a variance stabilization routine on the spatial domain through a Fisz transformation. The proposed method enjoys adaptability, easy tuning and theoretical guaranties. We propose the corresponding algorithm together with results that demonstrate the benefits of the proposed spatiotemporal approach over the successive spatial treatment. Finally, we describe a data-driven extension of the proposed method that is based on temporal pre-filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Available on https://sites.google.com/site/pierrickcoupe/softwares/denoising-for-medical-imaging/speckle-reduction/obnlm-package.

References

  1. Abbott, J.G., Thurstone, F.: Acoustic speckle: theory and experimental analysis. Ultrason. Imaging 1(4), 303–324 (1979)

    Article  Google Scholar 

  2. Achim, A., Bezerianos, A., Tsakalides, P.: Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans. Med. Imaging 20(8), 772–783 (2001)

    Article  Google Scholar 

  3. Amiot, C., Girard, C., Chanussot, J., Pescatore, J., Desvignes, M.: Spatio-temporal multiscale denoising of fluoroscopic sequence. IEEE Trans. Med. Imaging 35(6), 1565–1574 (2016)

    Article  Google Scholar 

  4. Clarysse, P., Tafazzoli, J., Delachartre, P., Croisille, P.: Simulation based evaluation of cardiac motion estimation methods in tagged-MR image sequences. J. Cardiovasc. Magn. Reson. 13(Suppl 1), P360 (2011)

    Article  Google Scholar 

  5. Coifman, R.R., Donoho, D.L.: Translation-invariant denoising. In: Antoniadis and Oppenheim, Wavelets and Statistics. Lecture Notes in Statistics, pp. 125–150 (1995)

  6. Coupé, P., Hellier, P., Kervrann, C., Barillot, C.: Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 18(7), 2221–2229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duarte, M.F., Baraniuk, R.G.: Kronecker compressive sensing. IEEE Trans. Image Process. 21(2), 494–504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farouj, Y., Freyermuth, J.M., Navarro, L., Clausel, M., Delachartre, P.: Hyperbolic wavelet-Fisz denoising for a model arising in ultrasound imaging. IEEE Trans. Comput. Imaging 3(1), 1–10 (2017)

    Article  Google Scholar 

  9. Forouzanfar, M., Moghaddam, H.A., Gity, M.: A new multiscale Bayesian algorithm for speckle reduction in medical ultrasound images. SIViP 4(3), 359–375 (2010)

    Article  MATH  Google Scholar 

  10. Fryzlewicz, P.: Data-driven wavelet-Fisz methodology for nonparametric function estimation. Electron. J. Stat. 2, 863–896 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gifani, P., Behnam, H., Sani, Z.A.: Noise reduction of echocardiographic images based on temporal information. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(4), 620–630 (2014)

    Article  Google Scholar 

  12. Gupta, D., Anand, R.S., Tyagi, B.: Despeckling of ultrasound medical images using ripplet domain nonlinear filtering. SIViP 9(5), 1093–1111 (2015)

    Article  Google Scholar 

  13. Jidesh, P., Bini, A.A.: Image despeckling and deblurring via regularized complex diffusion. SIViP 11(6), 977–984 (2017)

    Article  Google Scholar 

  14. Lee, J.S.: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2(2), 165–168 (1980)

    Article  Google Scholar 

  15. Loupas, T., McDicken, W., Allan, P.: An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans. Circuits Syst. 36, 129–135 (1989)

    Article  Google Scholar 

  16. Motakis, E., Nason, G.P., Fryzlewicz, P., Rutter, G.: Variance stabilization and normalization for one-color microarray data using a data-driven multiscale approach. Bioinformatics 22(20), 2547–2553 (2006)

    Article  Google Scholar 

  17. Nadaraya, E.A.: On estimating regression. Theory Probab. Appl. 9(1), 141–142 (1964)

    Article  MATH  Google Scholar 

  18. Nason, G.: Wavelet Methods in Statistics with R. Springer Science & Business Media, Berlin (2010)

    MATH  Google Scholar 

  19. Tenbrinck, D., Schmid, S., Jiang, X., Schäfers, K.P., Stypmann, J.: Histogram-based optical flow for motion estimation in ultrasound imaging. J. Math. Imaging Vis. 47(1–2), 138–150 (2013)

    Article  MATH  Google Scholar 

  20. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “Région Rhône-Alpes” under the ARC 6. L. Navarro’s research was supported by the (ANR) under reference ANR-15-CE19-0002 (LBSMI). P. Delachartre was within the framework of the Labex CELYA (ANR-10-LABX-0060) and Labex PRIMES (ANR-11-LABX-0063) of the Université de Lyon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Farouj.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 2997 KB)

Supplementary material 2 (avi 3681 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farouj, Y., Navarro, L., Freyermuth, JM. et al. Ultrasound spatiotemporal despeckling via Kronecker wavelet-Fisz thresholding. SIViP 12, 1125–1132 (2018). https://doi.org/10.1007/s11760-018-1260-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1260-6

Keywords

Navigation