Skip to main content

Advertisement

Log in

Molecular oncology of lung cancer

  • Current Topics Review Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Progress in genetic engineering has made it possible to elucidate the molecular biological abnormalities in lung cancer. Mutations in KRAS and P53 genes, loss of specific alleles, and DNA methylation of the tumor suppressor genes were the major abnormalities investigated between 1980 and the 2000s. In 2004, mutations in the epidermal growth factor receptor (EGFR) gene that cause oncogene addiction were discovered in non-small-cell lung cancers (NSCLCs), especially in adenocarcinomas. Because they are strongly associated with sensitivity to EGFR-tyrosine kinase inhibitors (EGFR-TKIs), a great deal of knowledge has been acquired in regard to both EGFR and other genes in the EGFR family and their downstream genes. Moreover, in 2007 the existence of the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene was discovered in NSCLC; and the same as EGFR-TKIs, ALK inhibitors are being found to be highly effective in lung cancers that have this translocation. These discoveries graphically illustrate that molecular biological findings are directly linked to the development of clinical oncology and to improving the survival rates of lung cancer patients. Here, we review the remarkable progress in molecular biological knowledge acquired thus far in regard to lung cancer, especially NSCLC, and the future possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009;59:225–249.

    Article  PubMed  Google Scholar 

  2. Fukui T, Mitsudomi T. Mutations in the epidermal growth factor receptor gene and effects of EGFR-tyrosine kinase inhibitors on lung cancers. Gen Thorac Cardiovasc Surg 2008;56:97–103.

    Article  PubMed  Google Scholar 

  3. Jida M, Toyooka S, Mitsudomi T, Takano T, Matsuo K, Hotta K, et al. Usefulness of cumulative smoking dose for identifying the EGFR mutation and patients with non-small-cell lung cancer for gefitinib treatment. Cancer Sci 2009;100: 1931–1934.

    Article  PubMed  CAS  Google Scholar 

  4. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006;355:2542–2550.

    Article  PubMed  CAS  Google Scholar 

  5. Yarden Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 2001;suppl 4:S3–S8.

    Article  Google Scholar 

  6. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304:1497–1500.

    Article  PubMed  CAS  Google Scholar 

  7. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350: 2129–2139.

    Article  PubMed  CAS  Google Scholar 

  8. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba, II, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005;97:339–346.

    Article  PubMed  CAS  Google Scholar 

  9. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of nonsmall-cell lung cancer to gefitinib. N Engl J Med 2005;352: 786–792.

    Article  PubMed  CAS  Google Scholar 

  10. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005;2:e73.

    Article  PubMed  Google Scholar 

  11. Inukai M, Toyooka S, Ito S, Asano H, Ichihara S, Soh J, et al. Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res 2006;66:7854–7858.

    Article  PubMed  CAS  Google Scholar 

  12. Soh J, Okumura N, Lockwood WW, Yamamoto H, Shigematsu H, Zhang W, et al. Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS One 2009:e7464.

  13. Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 2005;97:643–655.

    Article  PubMed  CAS  Google Scholar 

  14. Ichihara S, Toyooka S, Fujiwara Y, Hotta K, Shigematsu H, Tokumo M, et al. The impact of epidermal growth factor receptor gene status on gefitinib-treated Japanese patients with non-small-cell lung cancer. Int J Cancer 2007;120: 1239–1247.

    Article  PubMed  CAS  Google Scholar 

  15. Gandhi J, Zhang J, Xie Y, Soh J, Shigematsu H, Zhang W, et al. Alterations in genes of the EGFR signaling pathway and their relationship to EGFR tyrosine kinase inhibitor sensitivity in lung cancer cell lines. PLoS One 2009;4:e4576.

    Article  PubMed  Google Scholar 

  16. Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer 2006;118:257–262.

    Article  PubMed  CAS  Google Scholar 

  17. Cappuzzo F, Varella-Garcia M, Shigematsu H, Domenichini I, Bartolini S, Ceresoli GL, et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol 2005;23:5007–5018.

    Article  PubMed  CAS  Google Scholar 

  18. Soh J, Toyooka S, Ichihara S, Fujiwara Y, Hotta K, Suehisa H, et al. Impact of HER2 and EGFR gene status on gefitinibtreated patients with nonsmall-cell lung cancer. Int J Cancer 2007;121:1162–1167.

    Article  PubMed  CAS  Google Scholar 

  19. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007;316:1039–1043.

    Article  PubMed  CAS  Google Scholar 

  20. Kubo T, Yamamoto H, Lockwood WW, Valencia I, Soh J, Peyton M, et al. MET gene amplification or EGFR mutation activate MET in lung cancers untreated with EGFR tyrosine kinase inhibitors. Int J Cancer 2009;124:1778–1784.

    Article  PubMed  CAS  Google Scholar 

  21. Onozato R, Kosaka T, Kuwano H, Sekido Y, Yatabe Y, Mitsudomi T. Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J Thorac Oncol 2009;4:5–11.

    Article  PubMed  Google Scholar 

  22. Yano S, Wang W, Li Q, Matsumoto K, Sakurama H, Nakamura T, et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res 2008;68:9479–9487.

    Article  PubMed  CAS  Google Scholar 

  23. Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 2010;17: 77–88.

    Article  PubMed  CAS  Google Scholar 

  24. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002;2: 489–501.

    Article  PubMed  CAS  Google Scholar 

  25. Bader AG, Kang S, Zhao L, Vogt PK. Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 2005;5: 921–929.

    Article  PubMed  CAS  Google Scholar 

  26. Yamamoto H, Shigematsu H, Nomura M, Lockwood WW, Sato M, Okumura N, et al. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res 2008;68: 6913–6921.

    Article  PubMed  CAS  Google Scholar 

  27. Kim MS, Jeong EG, Yoo NJ, Lee SH. Mutational analysis of oncogenic AKT E17K mutation in common solid cancers and acute leukaemias. Br J Cancer 2008;98:1533–1535.

    Article  PubMed  CAS  Google Scholar 

  28. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999;401: 82–85.

    Article  PubMed  CAS  Google Scholar 

  29. Cappuzzo F, Magrini E, Ceresoli GL, Bartolini S, Rossi E, Ludovini V, et al. Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 2004;96:1133–1141.

    Article  PubMed  CAS  Google Scholar 

  30. Pal SK, Figlin RA, Reckamp KL. The role of targeting mammalian target of rapamycin in lung cancer. Clin Lung Cancer 2008;9:340–345.

    Article  PubMed  CAS  Google Scholar 

  31. Gridelli C, Maione P, Rossi A. The potential role of mTOR inhibitors in non-small cell lung cancer. Oncologist 2008;13: 139–147.

    Article  PubMed  CAS  Google Scholar 

  32. Tsuchida N, Ohtsubo E, Ryder T. Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten murine sarcoma virus. Science 1982;217:937–939.

    Article  PubMed  CAS  Google Scholar 

  33. Mitsudomi T, Viallet J, Mulshine JL, Linnoila RI, Minna JD, Gazdar AF. Mutations of ras genes distinguish a subset of non-small-cell lung cancer cell lines from small-cell lung cancer cell lines. Oncogene 1991;6:1353–1362.

    PubMed  CAS  Google Scholar 

  34. Jackman DM, Miller VA, Cioffredi LA, Yeap BY, Janne PA, Riely GJ, et al. Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clin Cancer Res 2009;15:5267–5273.

    Article  PubMed  CAS  Google Scholar 

  35. Marks JL, Gong Y, Chitale D, Golas B, McLellan MD, Kasai Y, et al. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res 2008;68:5524–5528.

    Article  PubMed  CAS  Google Scholar 

  36. Davis RJ. Transcriptional regulation by MAP kinases. Mol Reprod Dev 1995;42:459–467.

    Article  PubMed  CAS  Google Scholar 

  37. Yatabe Y, Kosaka T, Takahashi T, Mitsudomi T. EGFR mutation is specific for terminal respiratory unit type adenocarcinoma. Am J Surg Pathol 2005;29:633–639.

    Article  PubMed  Google Scholar 

  38. Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature 2007;450:893–898.

    Article  PubMed  CAS  Google Scholar 

  39. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007;448:561–566.

    Article  PubMed  CAS  Google Scholar 

  40. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008;8: 497–511.

    Article  PubMed  CAS  Google Scholar 

  41. Pulford K, Morris SW, Turturro F. Anaplastic lymphoma kinase proteins in growth control and cancer. J Cell Physiol 2004;199:330–358.

    Article  PubMed  CAS  Google Scholar 

  42. Takeuchi K, Choi YL, Togashi Y, Soda M, Hatano S, Inamura K, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 2009;15:3143–3149.

    Article  PubMed  CAS  Google Scholar 

  43. Inamura K, Takeuchi K, Togashi Y, Hatano S, Ninomiya H, Motoi N, et al. EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset. Mod Pathol 2009;22:508–515.

    Article  PubMed  CAS  Google Scholar 

  44. Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 2009;27:4247–4253.

    Article  PubMed  CAS  Google Scholar 

  45. McDermott U, Iafrate AJ, Gray NS, Shioda T, Classon M, Maheswaran S, et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res 2008;68:3389–3395.

    Article  PubMed  CAS  Google Scholar 

  46. Sherr CJ. Cancer cell cycles. Science 1996;274:1672–1677.

    Article  PubMed  CAS  Google Scholar 

  47. Ewen ME. The cell cycle and the retinoblastoma protein family. Cancer Metastasis Rev 1994;13:45–66.

    Article  PubMed  CAS  Google Scholar 

  48. Wistuba II, Gazdar AF, Minna JD. Molecular genetics of small cell lung carcinoma. Semin Oncol 2001;28(suppl 4): 3–13.

    Article  PubMed  CAS  Google Scholar 

  49. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA. Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996;85:27–37.

    Article  PubMed  CAS  Google Scholar 

  50. Toyooka S, Toyooka KO, Maruyama R, Virmani AK, Girard L, Miyajima K, et al. DNA methylation profiles of lung tumors. Mol Cancer Ther 2001;1:61–67.

    PubMed  CAS  Google Scholar 

  51. Harris CC. p53 tumor suppressor gene: from the basic research laboratory to the clinic: an abridged historical perspective. Carcinogenesis 1996;17:1187–1198.

    Article  PubMed  CAS  Google Scholar 

  52. Hainaut P, Pfeifer GP. Patterns of p53 G→T transversions in lung cancers refl ect the primary mutagenic signature of DNAdamage by tobacco smoke. Carcinogenesis 2001;22:367–374.

    Article  PubMed  CAS  Google Scholar 

  53. Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, et al. p53: a frequent target for genetic abnormalities in lung cancer. Science 1989;246:491–494.

    Article  PubMed  CAS  Google Scholar 

  54. Mitsudomi T, Steinberg SM, Nau MM, Carbone D, D’Amico D, Bodner S, et al. p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features. Oncogene 1992;7:171–180.

    PubMed  CAS  Google Scholar 

  55. Eymin B, Gazzeri S, Brambilla C, Brambilla E. Mdm2 overexpression and p14(ARF) inactivation are two mutually exclusive events in primary human lung tumors. Oncogene 2002;21:2750–2761.

    Article  PubMed  CAS  Google Scholar 

  56. VanderBorght A, Valckx A, Van Dun J, Grand-Perret T, De Schepper S, Vialard J, et al. Effect of an hdm-2 antagonist peptide inhibitor on cell cycle progression in p53-deficient H1299 human lung carcinoma cells. Oncogene 2006;25: 6672–6677.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998;92:725–734.

    Article  PubMed  CAS  Google Scholar 

  58. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 1971;68:820–823.

    Article  PubMed  Google Scholar 

  59. Girard L, Zochbauer-Muller S, Virmani AK, Gazdar AF, Minna JD. Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res 2000;60:4894–4906.

    PubMed  CAS  Google Scholar 

  60. Daly MC, Xiang RH, Buchhagen D, Hensel CH, Garcia DK, Killary AM, et al. A homozygous deletion on chromosome 3 in a small cell lung cancer cell line correlates with a region of tumor suppressor activity. Oncogene 1993;8:1721–1729.

    PubMed  CAS  Google Scholar 

  61. Roche J, Boldog F, Robinson M, Robinson L, Varella-Garcia M, Swanton M, et al. Distinct 3p21.3 deletions in lung cancer and identification of a new human semaphorin. Oncogene 1996;12:1289–1297.

    PubMed  CAS  Google Scholar 

  62. Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 2000;25:315–319.

    Article  PubMed  CAS  Google Scholar 

  63. Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 2001;93:691–699.

    Article  PubMed  CAS  Google Scholar 

  64. Sozzi G, Veronese ML, Negrini M, Baffa R, Cotticelli MG, Inoue H, et al. The FHIT gene 3p14.2 is abnormal in lung cancer. Cell 1996;85:17–26.

    Article  PubMed  CAS  Google Scholar 

  65. Rohr UP, Rehfeld N, Geddert H, Pflugfelder L, Bruns I, Neukirch J, et al. Prognostic relevance of fragile histidine triad protein expression in patients with small cell lung cancer. Clin Cancer Res 2005;11:180–185.

    PubMed  CAS  Google Scholar 

  66. Zochbauer-Muller S, Fong KM, Maitra A, Lam S, Geradts J, Ashfaq R, et al. 5′ CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res 2001;61:3581–3585.

    PubMed  CAS  Google Scholar 

  67. Greider CW, Blackburn EH. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 1987;51:887–898.

    Article  PubMed  CAS  Google Scholar 

  68. Hiyama K, Hiyama E, Ishioka S, Yamakido M, Inai K, Gazdar AF, et al. Telomerase activity in small-cell and nonsmall-cell lung cancers. J Natl Cancer Inst 1995;87:895–902.

    Article  PubMed  CAS  Google Scholar 

  69. Albanell J, Lonardo F, Rusch V, Engelhardt M, Langenfeld J, Han W, et al. High telomerase activity in primary lung cancers: association with increased cell proliferation rates and advanced pathologic stage. J Natl Cancer Inst 1997;89: 1609–1615.

    Article  PubMed  CAS  Google Scholar 

  70. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306–1309.

    Article  PubMed  CAS  Google Scholar 

  71. Fontanini G, Vignati S, Boldrini L, Chine S, Silvestri V, Lucchi M, et al. Vascular endothelial growth factor is associated with neovascularization and infl uences progression of non-small cell lung carcinoma. Clin Cancer Res 1997;3: 861–865.

    PubMed  CAS  Google Scholar 

  72. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009;119:1420–1428.

    Article  PubMed  CAS  Google Scholar 

  73. Guo CB, Wang S, Deng C, Zhang DL, Wang FL, Jin XQ. Relationship between matrix metalloproteinase 2 and lung cancer progression. Mol Diagn Ther 2007;11:183–192.

    PubMed  CAS  Google Scholar 

  74. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759–767.

    Article  PubMed  CAS  Google Scholar 

  75. Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A 1998;95:11891–11896.

    Article  PubMed  CAS  Google Scholar 

  76. Tang X, Shigematsu H, Bekele BN, Roth JA, Minna JD, Hong WK, et al. EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res 2005;65:7568–7572.

    PubMed  CAS  Google Scholar 

  77. Kubo T, Yamamoto H, Ichimura K, Jida M, Hayashi T, Otani H, et al. DNA methylation in small lung adenocarcinoma with bronchioloalveolar carcinoma components. Lung Cancer 2009;65:328–332.

    Article  PubMed  Google Scholar 

  78. Colby TV, Wistuba, II, Gazdar A. Precursors to pulmonary neoplasia. Adv Anat Pathol 1998;5:205–215.

    Article  PubMed  CAS  Google Scholar 

  79. Sullivan JP, Minna JD, Shay JW. Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer Metastasis Rev 2010;29:12.

    Article  Google Scholar 

  80. Patel M, Lu L, Zander DS, Sreerama L, Coco D, Moreb JS. ALDH1A1 and ALDH3A1 expression in lung cancers: correlation with histologic type and potential precursors. Lung Cancer 2008;59:340–349.

    Article  PubMed  Google Scholar 

  81. Westhoff B, Colaluca IN, D’Ario G, Donzelli M, Tosoni D, Volorio S, et al. Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci U S A 2009;106:22293–22298.

    Article  PubMed  CAS  Google Scholar 

  82. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003;422: 313–317.

    Article  PubMed  CAS  Google Scholar 

  83. Lemjabbar-Alaoui H, Dasari V, Sidhu SS, Mengistab A, Finkbeiner W, Gallup M, et al. Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS One 2006;1:e93.

    Article  PubMed  Google Scholar 

  84. Weinstein IB, Joe AK. Mechanisms of disease: oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 2006;3:448–457.

    Article  PubMed  CAS  Google Scholar 

  85. Toyooka S, Tokumo M, Shigematsu H, Matsuo K, Asano H, Tomii K, et al. Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers. Cancer Res 2006;66:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  86. Sharma SV, Gajowniczek P, Way IP, Lee DY, Jiang J, Yuza Y, et al. A common signaling cascade may underlie “addiction” to the Src, BCR-ABL, and EGF receptor oncogenes. Cancer Cell 2006;10:425–435.

    Article  PubMed  CAS  Google Scholar 

  87. Sharma SV, Settleman J. Exploiting the balance between life and death: targeted cancer therapy and “oncogenic shock.” Biochem Pharmacol 2010;80:666–673.

    Article  PubMed  CAS  Google Scholar 

  88. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281–297.

    Article  PubMed  CAS  Google Scholar 

  89. Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med 2009;60:167–179.

    Article  PubMed  CAS  Google Scholar 

  90. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004;64:3753–3756.

    Article  PubMed  CAS  Google Scholar 

  91. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006;9:189–198.

    Article  PubMed  CAS  Google Scholar 

  92. Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, Fan H, et al. MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res 2009;69:5776–5783.

    Article  PubMed  CAS  Google Scholar 

  93. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005;65:9628–9632.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Toyooka.

Additional information

This review was submitted at the invitation of the editorial committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyooka, S., Mitsudomi, T., Soh, J. et al. Molecular oncology of lung cancer. Gen Thorac Cardiovasc Surg 59, 527–537 (2011). https://doi.org/10.1007/s11748-010-0743-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-010-0743-3

Key words

Navigation