Skip to main content

Advertisement

Log in

Modified Haller index validation and correlation with left ventricular strain in a cohort of subjects with obesity and without overt heart disease

  • IM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

The present study was primarily designed to validate the modified Haller index (MHI), the ratio of chest transverse diameter over the distance between sternum and spine, measured by a ruler and transthoracic echocardiography (TTE), respectively, in a cohort of subjects with obesity, but otherwise healthy, by comparing the results to the conventional Haller index (HI) measured on chest X-ray (CXR). 100 consecutive subjects with body mass index (BMI) ≥ 30 kg/m2 and 60 matched controls with BMI < 30 kg/m2, who underwent a two-plane CXR for any clinical indication, were prospectively examined over a 6-month period. All participants underwent MHI assessment, TTE and speckle-tracking analysis of left ventricular (LV) global longitudinal strain (GLS). Bland–Altman analysis was used to compare the radiological and nonradiological techniques. Second, independent predictors of subclinical myocardial dysfunction, defined as LV-GLS less negative than − 20%, were evaluated. Bland–Altman analysis revealed a bias of − 4.91 cm for latero-lateral thoracic diameter, of − 0.74 cm for antero-posterior (A–P) thoracic diameter and of − 0.22 for HI assessment, suggesting a systematic overestimation of the nonradiological methodology in comparison to that radiological. Despite normal LV systolic function on TTE, LV-GLS resulted impaired in 76% of subjects with obesity. Waist circumference (OR 1.13, 95%CI 1.04–1.22) and nonradiological A–P thoracic diameter (OR 0.51, 95%CI 0.28–0.93) were the main independent predictors of subclinical myocardial dysfunction in subjects with obesity. The impairment in LV myocardial strain detected in subjects with obesity appears to be primarily related to extrinsic abdominal and thoracic compressive phenomena, rather than intrinsic myocardial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

A–P:

Antero-posterior

AUC:

Area under curve

BMI:

Body mass index

CI:

Confidence interval

CO:

Cardiac output

CXR:

Chest X-ray

eGFR:

Estimated glomerular filtration rate

GLS:

Global longitudinal strain

HI:

Haller index

ICC:

Intraclass correlation coefficient

LAVi:

Left atrial volume index

LDL:

Low-density lipoprotein

L–L: latero-lateral; LV:

Left ventricular

LVEF:

Left ventricular ejection fraction

LVMi:

Left ventricular mass index

LVOT:

Left ventricular outflow tract

MAPSE:

Mitral annular plane systolic excursion

MHI:

Modified Haller index

OR:

Odds ratio

OSAS:

Obstructive sleep apnea syndrome

P–A:

Postero-anterior

ROC:

Receiver operating characteristics

RV:

Right ventricular

RWT:

Relative wall thickness

SPAP:

Systolic pulmonary artery pressure

STE:

Speckle-tracking echocardiography

Svi:

Stroke volume index

TAPSE:

Tricuspid annular plane systolic excursion

TTE:

Transthoracic echocardiography

References

  1. Arroyo-Johnson C, Mincey KD (2016) Obesity epidemiology worldwide. Gastroenterol Clin North Am 45:571–579

    Article  PubMed  PubMed Central  Google Scholar 

  2. GBD (2015) Obesity Collaborators, Afshin A, Forouzanfar MH et al. (2017) Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med 377:13–27

    Google Scholar 

  3. Cil H, Bulur S, Türker Y et al (2012) Impact of body mass index on left ventricular diastolic dysfunction. Echocardiography 29:647–651

    Article  PubMed  Google Scholar 

  4. Loehr LR, Rosamond WD, Poole C et al (2009) Association of multiple anthropometrics of overweight and obesity with incident heart failure: the atherosclerosis risk in communities study. Circ Heart Fail 2:18–24

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ndumele CE, Matsushita K, Lazo M et al (2016) Obesity and subtypes of incident Cardiovascular disease. J Am Heart Assoc 5:e003921

    Article  PubMed  PubMed Central  Google Scholar 

  6. Murphy NF, MacIntyre K, Stewart S, Hart CL, Hole D, McMurray JJ (2006) Long-term cardiovascular consequences of obesity: 20 year follow-up of more than 15,000 middle-aged men and women (the Renfrew-Paisley study). Eur Heart J 27:96–106

    Article  CAS  PubMed  Google Scholar 

  7. Alpert MA, Lavie CJ, Agrawal H, Aggarwal KB, Kumar SA (2014) Obesity and heart failure: epidemiology, pathophysiology, clinical manifestations, and management. Transl Res 164:345–356

    Article  CAS  PubMed  Google Scholar 

  8. Bello NA, Cheng S, Claggett B et al (2016) Association of weight and body composition on cardiac structure and function in the ARIC study (atherosclerosis risk in communities). Circ Heart Fail 9:e002978

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sonaglioni A, Vincenti A, Baravelli M et al (2019) Prognostic value of global left atrial peak strain in patients with acute ischemic stroke and no evidence of atrial fibrillation. Int J Cardiovasc Imaging 35:603–613

    Article  PubMed  Google Scholar 

  10. Sonaglioni A, Lonati C, Lombardo M et al (2019) Incremental prognostic value of global left atrial peak strain in women with new-onset gestational hypertension. J Hypertens 37:1668–1675

    Article  CAS  PubMed  Google Scholar 

  11. Sonaglioni A, Caminati A, Lipsi R et al (2020) Early left atrial dysfunction in idiopathic pulmonary fibrosis patients without chronic right heart failure. Int J Cardiovasc Imaging 36:1711–1723

    Article  PubMed  Google Scholar 

  12. Sonaglioni A, Cara MD, Nicolosi GL et al (2021) Rapid risk stratification of acute ischemic stroke patients in the emergency department: the incremental prognostic role of left atrial reservoir strain. J Stroke Cerebrovasc Dis 30:106100

    Article  PubMed  Google Scholar 

  13. Wong CY, O’Moore-Sullivan T, Leano R, Byrne N, Beller E, Marwick TH (2004) Alterations of left ventricular myocardial characteristics associated with obesity. Circulation 110:3081–3087

    Article  PubMed  Google Scholar 

  14. Barbosa MM, Beleigoli AM, de Fatima DM, Freire CV, Ribeiro AL, Nunes MC (2011) Strain imaging in morbid obesity: insights into subclinical ventricular dysfunction. Clin Cardiol 34:288–293

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang YC, Liang CS, Gopal DM et al (2015) Preclinical systolic and diastolic dysfunctions in metabolically healthy and unhealthy obese individuals. Circ Heart Fail 8:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Suto M, Tanaka H, Mochizuki Y et al (2017) Impact of overweight on left ventricular function in type 2 diabetes mellitus. Cardiovasc Diabetol 16:145

    Article  PubMed  PubMed Central  Google Scholar 

  17. Russo C, Sera F, Jin Z et al (2016) Abdominal adiposity, general obesity, and subclinical systolic dysfunction in the elderly: a population-based cohort study. Eur J Heart Fail 18:537–544

    Article  PubMed  Google Scholar 

  18. Ng ACT, Prevedello F, Dolci G et al (2018) Impact of diabetes and increasing body mass index category on left ventricular systolic and diastolic function. J Am Soc Echocardiogr 31:916–925

    Article  PubMed  Google Scholar 

  19. Dini FL, Fabiani I, Miccoli M et al (2018) Prevalence and determinants of left ventricular diastolic dysfunction in obese subjects and the role of left ventricular global longitudinal strain and mass normalized to height. Echocardiography 35:1124–1131

    Article  PubMed  Google Scholar 

  20. Sonaglioni A, Baravelli M, Vincenti A et al (2018) A New modified anthropometric haller index obtained without radiological exposure. Int J Cardiovasc Imaging 34:1505–1509

    Article  PubMed  Google Scholar 

  21. Sonaglioni A, Nicolosi GL, Granato A, Lombardo M, Anzà C, Ambrosio G (2021) Reduced myocardial strain parameters in subjects with pectus excavatum: impaired myocardial function or methodological limitations due to chest deformity? Semin Thorac Cardiovasc Surg 33:251–262

    Article  PubMed  Google Scholar 

  22. Sonaglioni A, Nicolosi GL, Braga M, Villa MC, Migliori C, Lombardo M (2021) Does chest wall conformation influence myocardial strain parameters in infants with pectus excavatum? J Clin Ultrasound 49:918–928

    Article  PubMed  Google Scholar 

  23. Sonaglioni A, Nicolosi GL, Lombardo M, Gensini GF, Ambrosio G (2021) Influence of chest conformation on myocardial strain parameters in healthy subjects with mitral valve prolapse. Int J Cardiovasc Imaging 37:1009–1022

    Article  PubMed  Google Scholar 

  24. Sonaglioni A, Esposito V, Caruso C et al (2021) Chest conformation spuriously influences strain parameters of myocardial contractile function in healthy pregnant women. J Cardiovasc Med (Hagerstown) 22:767–779

    Article  CAS  Google Scholar 

  25. Sidden CR, Katz ME, Swoveland BC, Nuss D (2001) Radiologic considerations in patients undergoing the Nuss procedure for correction of pectus excavatum. Pediatr Radiol 31:429–434

    Article  CAS  PubMed  Google Scholar 

  26. Archer JE, Gardner A, Berryman F, Pynsent P (2016) The measurement of the normal thorax using the Haller index methodology at multiple vertebral levels. J Anat 229:577–581

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alageel S, Gulliford MC (2019) Health checks and cardiovascular risk factor values over 6 year’s follow-up: matched cohort study using electronic health records in England. PLoS Med 16:e1002863

    Article  PubMed  PubMed Central  Google Scholar 

  28. Apovian CM (2016) Obesity: definition, comorbidities, causes, and burden. Am J Manag Care 22:s176–s185

    PubMed  Google Scholar 

  29. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  30. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1-39.e14

    Article  PubMed  Google Scholar 

  31. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314

    Article  PubMed  Google Scholar 

  32. Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  33. Nishimura RA, Otto CM, Bonow RO et al (2017) 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation 135:e1159–e1195

    Article  PubMed  Google Scholar 

  34. Galderisi M, Cosyns B, Edvardsen T et al (2017) Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 18:1301–1310

    Article  PubMed  Google Scholar 

  35. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  36. Haller JA Jr, Kramer SS, Lietman SA (1987) Use of CT scans in selection of patients for pectus excavatum surgery: a preliminary report. J Pediatr Surg 22:904–906

    Article  PubMed  Google Scholar 

  37. Daunt SW, Cohen JH, Miller SF (2004) Age-related normal ranges for the Haller index in children. Pediatr Radiol 34:326–330

    Article  PubMed  Google Scholar 

  38. Russo C, Jin Z, Homma S et al (2010) Effect of diabetes and hypertension on left ventricular diastolic function in a high-risk population without evidence of heart disease. Eur J Heart Fail 12:454–461

    Article  PubMed  PubMed Central  Google Scholar 

  39. De Jong KA, Czeczor JK, Sithara S et al (2017) Obesity and type 2 diabetes have additive effects on left ventricular remodelling in normotensive patients-a cross sectional study. Cardiovasc Diabetol 16:21

    Article  PubMed  PubMed Central  Google Scholar 

  40. Berg TJ, Snorgaard O, Faber J et al (1999) Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care 22:1186–1190

    Article  CAS  PubMed  Google Scholar 

  41. Wong CY, O’Moore-Sullivan T, Leano R, Hukins C, Jenkins C, Marwick TH (2006) Association of subclinical right ventricular dysfunction with obesity. J Am Coll Cardiol 47:611–616

    Article  PubMed  Google Scholar 

  42. Gong HP, Tan HW, Fang NN et al (2009) Impaired left ventricular systolic and diastolic function in patients with metabolic syndrome as assessed by strain and strain rate imaging. Diabetes Res Clin Pract 83:300–307

    Article  PubMed  Google Scholar 

  43. Ng AC, Delgado V, Bertini M et al (2010) Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation 122:2538–2544

    Article  PubMed  Google Scholar 

  44. Jørgensen PG, Jensen MT, Biering-Sørensen T et al (2016) Cholesterol remnants and triglycerides are associated with decreased myocardial function in patients with type 2 diabetes. Cardiovasc Diabetol 15:137

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee HJ, Kim HL, Lim WH et al (2019) Subclinical alterations in left ventricular structure and function according to obesity and metabolic health status. PLoS ONE 14:e0222118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ho JE, McCabe EL, Wang TJ et al (2017) Cardiometabolic traits and systolic mechanics in the community. Circ Heart Fail 10:e003536

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu JE, Robbins DC, Palmieri V et al (2003) Association of albuminuria with systolic and diastolic left ventricular dysfunction in type 2 diabetes: the strong heart study. J Am Coll Cardiol 41:2022–2028

    Article  CAS  PubMed  Google Scholar 

  48. Lorch SM, Sharkey A (2007) Myocardial velocity, strain, and strain rate abnormalities in healthy obese children. J Cardiometab Syndr 2:30–34

    Article  PubMed  Google Scholar 

  49. Devereux RB, Reichek N (1977) Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method Circulation 55:613–618

    Article  CAS  PubMed  Google Scholar 

  50. Kosmala W, Wong C, Kuliczkowska J, Leano R, Przewlocka-Kosmala M, Marwick TH (2008) Use of body weight and insulin resistance to select obese patients for echocardiographic assessment of subclinical left ventricular dysfunction. Am J Cardiol 101:1334–1340

    Article  PubMed  Google Scholar 

  51. Meigs JB, Wilson PW, Fox CS et al (2006) Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J Clin Endocrinol Metab 91:2906–2912

    Article  CAS  PubMed  Google Scholar 

  52. St-Pierre AC, Cantin B, Mauriège P et al (2005) Insulin resistance syndrome, body mass index and the risk of ischemic heart disease. CMAJ 172:1301–1305

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schäfer H, Pauleit D, Sudhop T, Gouni-Berthold I, Ewig S, Berthold HK (2002) Body fat distribution, serum leptin, and cardiovascular risk factors in men with obstructive sleep apnea. Chest 122:829–839

    Article  PubMed  Google Scholar 

  54. Carratù P, Di Ciaula A, Dragonieri S et al (2021) Relationships between obstructive sleep apnea syndrome and cardiovascular risk in a naïve population of southern Italy. Int J Clin Pract 75:e14952

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by Italian Ministry of Health Ricerca Corrente—IRCCS MultiMedica.

Funding

This work has been supported by Italian Ministry of Health Ricerca Corrente—IRCCS MultiMedica.

Author information

Authors and Affiliations

Authors

Contributions

AS: Conceptualization; Data curation; Investigation; Methodology; Software; Visualization; Writing—original draft. RT and AG: Conceptualization; Data curation; Methodology; Software. GLN, MZ and ML: Conceptualization; Supervision; Validation; Writing—review and editing.

Corresponding author

Correspondence to Andrea Sonaglioni.

Ethics declarations

Conflict of interest

We wish to confirm that there are no conflicts of interest associated with this publication. Andrea Sonaglioni declares that he has no conflict of interest. Gian Luigi Nicolosi declares that he has no conflict of interest. Roberta Trevisan declares that she has no conflict of interest. Alberto Granato declares that he has no conflict of interest. Maurizio Zompatori declares that he has no conflict of interest. Michele Lombardo declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonaglioni, A., Nicolosi, G.L., Trevisan, R. et al. Modified Haller index validation and correlation with left ventricular strain in a cohort of subjects with obesity and without overt heart disease. Intern Emerg Med 17, 1907–1919 (2022). https://doi.org/10.1007/s11739-022-03026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-022-03026-5

Keywords

Navigation