Skip to main content
Log in

The value of admission Troponin I to predict outcomes in suspected infections in elderly patients admitted in Internal Medicine: results from the SOFA-T collaboration, a multi-center study

  • IM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Elderly patients affected by suspected infection and declining clinical conditions can be admitted to stepdown units (SDU), but a risk stratification is necessary to optimize their management. Admission troponin I (aTnI) has a prognostic role, however, one of the most commonly used stratification tools, the Sequential Organ Failure Assessment score (SOFA), does not consider myocardial injury. With this paper, we aimed to evaluate the prognostic accuracy of a new score, named SOFA-T, considering both SOFA score and aTnI in a cohort of elderly patients admitted to the stepdown beds of two Internal Medicine departments. Patients aged > 65 years admitted in SDU of two different hospitals of the same region in a 12-months timeframe were retrospectively assessed obtaining age, sex, days of admission, in-hospital death, SOFA, aTnI and comorbidities. The best aTnI cutoff for in-hospital death was calculated with ROC curve analysis; dichotomous variables were compared with chi-squared test; continuous variables were compared with t test or Mann–Whitney test. We obtained a cohort of 390 patients. The best aTnI cutoff was 0.31 ng/ml: patients with increased aTnI had higher risk of in-hospital death (OR: 1.834; 95% CI 1.160–2.900; p = 0.009), and higher SOFA (6.81 ± 2.71 versus 5.97 ± 3.10; p = 0.010). Adding aTnI to SOFA increased significantly the area under the curve (AUCSOFA = 0.68; 95% CI 0.64–0.73; AUCSOFA-T = 0.71; 95% CI 0.65–0.76; p = 0.0001), with a slight improvement of the prognostic performance. In elderly patients admitted to SDU for suspected infection, sepsis or septic shock, aTnI slightly improves the accuracy of SOFA score of the in-hospital death prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Juneja D (2012) Severe sepsis and septic shock in the elderly: An overview. World J Crit Care Med 1:23. https://doi.org/10.5492/wjccm.v1.i1.23

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brummel NE, Bell SP, Girard TD et al (2017) Frailty and subsequent disability and mortality among patients with critical illness. Am J Respir Crit Care Med 196:64–72. https://doi.org/10.1164/rccm.201605-0939OC

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mogensen KM, Horkan CM, Purtle SW et al (2018) Malnutrition, critical illness survivors, and postdischarge outcomes: a cohort study. J Parenter Enter Nutr 42:557–565. https://doi.org/10.1177/0148607117709766

    Article  CAS  Google Scholar 

  4. Opal SM, Girard TD, Ely EW (2005) The immunopathogenesis of sepsis in elderly patients. Clin Infect Dis 41:S504–S512. https://doi.org/10.1086/432007

    Article  CAS  PubMed  Google Scholar 

  5. Prin M, Wunsch H (2014) The role of stepdown beds in hospital care. Am J Respir Crit Care Med 190:1210–1216. https://doi.org/10.1164/rccm.201406-1117PP

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jones AE, Trzeciak S, Kline JA (2009) The Sequential Organ Failure Assessment score for predicting outcome in patients with severe sepsis and evidence of hypoperfusion at the time of emergency department presentation. Crit Care Med 37:1649–1654. https://doi.org/10.1097/CCM.0b013e31819def97

    Article  PubMed  PubMed Central  Google Scholar 

  7. Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963

    Article  Google Scholar 

  8. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829

    Article  CAS  Google Scholar 

  9. Falsetti L, Martino M, Zaccone V et al (2020) SOFA and qSOFA usefulness for in-hospital death prediction of elderly patients admitted for suspected infection in internal medicine. Infection. https://doi.org/10.1007/s15010-020-01494-5

    Article  PubMed  Google Scholar 

  10. Zaccone V, Falsetti L, Nitti C et al (2020) The prognostic role of procalcitonin in critically ill patients admitted in a medical stepdown unit: a retrospective cohort study. Sci Rep 10:4531. https://doi.org/10.1038/s41598-020-61457-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Docherty AB, Sim M, Oliveira J et al (2017) Early troponin I in critical illness and its association with hospital mortality: a cohort study. Crit Care 21:216. https://doi.org/10.1186/s13054-017-1800-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rahman A, Broadley SA (2014) Review article: Elevated troponin: Diagnostic gold or fool’s gold? Emerg Med Australas 26:125–130. https://doi.org/10.1111/1742-6723.12203

    Article  PubMed  Google Scholar 

  13. Lim W, Qushmaq I, Devereaux PJ et al (2006) Elevated cardiac troponin measurements in critically Ill patients. Arch Intern Med 166:2446–2454. https://doi.org/10.1001/archinte.166.22.2446

    Article  CAS  PubMed  Google Scholar 

  14. Sheyin O, Davies O, Duan W, Perez X (2015) The prognostic significance of troponin elevation in patients with sepsis: a meta-analysis. Hear Lung J Acute Crit Care 44:75–81. https://doi.org/10.1016/j.hrtlng.2014.10.002

    Article  Google Scholar 

  15. Bessière F, Khenifer S, Dubourg J et al (2013) Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med 39:1181–1189. https://doi.org/10.1007/s00134-013-2902-3

    Article  CAS  PubMed  Google Scholar 

  16. Zochios V, Valchanov K (2015) Raised cardiac troponin in intensive care patients with sepsis, in the absence of angiographically documented coronary artery disease: a systematic review. J Intensive Care Soc 16:52–57. https://doi.org/10.1177/1751143714555303

    Article  PubMed  Google Scholar 

  17. Vallabhajosyula S, Sakhuja A, Geske JB et al (2017) Role of admission Troponin-T and serial Troponin-T testing in predicting outcomes in severe sepsis and septic shock. J Am Heart Assoc 6:e005930. https://doi.org/10.1161/JAHA.117.005930

    Article  PubMed  PubMed Central  Google Scholar 

  18. Agewall S, Giannitsis E, Jernberg T, Katus H (2011) Troponin elevation in coronary vs. non-coronary disease. Eur Heart J. https://doi.org/10.1093/eurheartj/ehq456

    Article  PubMed  Google Scholar 

  19. Vincent JL, de Mendonça A, Cantraine F et al (1998) Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med 26:1793–1800

    Article  CAS  Google Scholar 

  20. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. https://doi.org/10.2307/2531595

    Article  PubMed  Google Scholar 

  21. Williams R Scalar Measures of Fit: Pseudo R 2 and Information Measures (AIC & BIC).

  22. Singer M, Deutschman CS, Seymour CW et al (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315:801. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pulido JN, Afessa B, Masaki M et al (2012) Clinical spectrum, frequency, and significance of myocardial dysfunction in severe sepsis and septic shock. Mayo Clin Proc. 87:620–628

    Article  Google Scholar 

  24. Landesberg G, Gilon D, Meroz Y et al (2012) Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J 33:895–903. https://doi.org/10.1093/eurheartj/ehr351

    Article  CAS  PubMed  Google Scholar 

  25. Arlati S, Brenna S, Prencipe L et al (2000) Myocardial necrosis in ICU patients with acute non-cardiac disease: a prospective study. Intensive Care Med 26:31–37

    Article  CAS  Google Scholar 

  26. Landesberg G, Jaffe AS, Gilon D et al (2014) Troponin elevation in severe sepsis and septic shock: the role of left ventricular diastolic dysfunction and right ventricular dilatation. Crit Care Med 42:790–800. https://doi.org/10.1097/CCM.0000000000000107

    Article  CAS  PubMed  Google Scholar 

  27. Ammann P, Fehr T, Minder E et al (2001) Elevation of troponin I in sepsis and septic shock. Intensive Care Med 27:965–969. https://doi.org/10.1007/s001340100920

    Article  CAS  PubMed  Google Scholar 

  28. Elevated Cardiac Troponins in Setting of Systemic Inflammatory Response Syndrome, Sepsis, and Septic Shock. https://www.hindawi.com/journals/isrn/2013/723435/. Accessed 11 May 2020.

  29. Vallabhajosyula S, Sakhuja A, Geske JB et al (2017) Role of admission Troponin-T and serial Troponin-T testing in predicting outcomes in severe sepsis and septic shock. J Am Heart Assoc. https://doi.org/10.1161/JAHA.117.005930

    Article  PubMed  PubMed Central  Google Scholar 

  30. Freund Y, Lemachatti N, Krastinova E et al (2017) Prognostic accuracy of sepsis-3 criteria for in-hospital mortality among patients with suspected infection presenting to the emergency department. JAMA 317:301–308. https://doi.org/10.1001/jama.2016.20329

    Article  PubMed  Google Scholar 

  31. Ferreira FL, Bota DP, Bross A et al (2001) Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 286:1754. https://doi.org/10.1001/jama.286.14.1754

    Article  CAS  PubMed  Google Scholar 

  32. Martin GS, Mannino DM, Moss M (2006) The effect of age on the development and outcome of adult sepsis. Crit Care Med 34:15–21. https://doi.org/10.1097/01.CCM.0000194535.82812.BA

    Article  PubMed  Google Scholar 

  33. Yang Y, Yang KS, Hsann YM et al (2010) The effect of comorbidity and age on hospital mortality and length of stay in patients with sepsis. J Crit Care 25:398–405. https://doi.org/10.1016/j.jcrc.2009.09.001

    Article  PubMed  Google Scholar 

  34. Fernando SM, McIsaac DI, Perry JJ et al (2019) Frailty and associated outcomes and resource utilization among older ICU patients with suspected infection. Crit Care Med 47:e669–e676. https://doi.org/10.1097/CCM.0000000000003831

    Article  PubMed  Google Scholar 

  35. Zador Z, Landry A, Cusimano MD, Geifman N (2019) Multimorbidity states associated with higher mortality rates in organ dysfunction and sepsis: a data-driven analysis in critical care. Crit Care 23:247. https://doi.org/10.1186/s13054-019-2486-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rucco M, Sousa-Rodrigues D, Merelli E et al (2015) Neural hypernetwork approach for pulmonary embolism diagnosis. BMC Res Notes 8:617. https://doi.org/10.1186/s13104-015-1554-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Falsetti L, Proietti M, Zaccone V et al (2020) Impact of atrial fibrillation in critically-ill patients admitted to a stepdown unit. Eur J Clin Invest. https://doi.org/10.1111/eci.13317

    Article  PubMed  Google Scholar 

  38. Mearelli F, Orso D, Fiotti N et al (2014) Sepsis outside intensive care unit: the other side of the coin. Infection 43:1–11. https://doi.org/10.1007/s15010-014-0673-6

    Article  PubMed  Google Scholar 

  39. Liu Z, Meng Z, Li Y et al (2019) Prognostic accuracy of the serum lactate level, the SOFA score and the qSOFA score for mortality among adults with Sepsis. Scand J Trauma Resusc Emerg Med. https://doi.org/10.1186/s13049-019-0609-3

    Article  PubMed  PubMed Central  Google Scholar 

  40. Oh Y, Roh J, Lee J et al (2020) Sequential Organ Failure Assessment score as a predictor of mortality in ventilated patients with multidrug-resistant bacteremia. Acute Crit Care 35:169–178. https://doi.org/10.4266/ACC.2020.00143

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LF and NT; methodology: LF, NT, MM; formal analysis and investigation: LF, NT, MM; writing—original draft preparation: LF, NT, MM, VZ, GV; writing—review and editing: MM, VZ, PM, GM, AF, CdP, AM, AS, CN, MB; data acquisition: MM, AF, CdP, AM; supervision: LF, NT, AS, MB.

Corresponding author

Correspondence to L. Falsetti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Ethical approval was waived by the Ethics Committees of both participating centres (INRCA Ethics Committee, Prot. N. 23533/19-CE and CERM Ethics Committee, Prot. N. 2019/387). In view of the retrospective nature of the study and all the procedures being performed were part of the routine care.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarquinio, N., Viticchi, G., Zaccone, V. et al. The value of admission Troponin I to predict outcomes in suspected infections in elderly patients admitted in Internal Medicine: results from the SOFA-T collaboration, a multi-center study. Intern Emerg Med 16, 981–988 (2021). https://doi.org/10.1007/s11739-020-02610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-020-02610-x

Keywords

Navigation